A112845 Recurrence a(n) = a(n-1)^3 - 3*a(n-1) with a(0) = 6.
6, 198, 7761798, 467613464999866416198, 102249460387306384473056172738577521087843948916391508591105798
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..6
- E. B. Escott, Rapid method for extracting a square root, Amer. Math. Monthly, 44 (1937), 644-646.
- N. J. Fine, Infinite products for k-th roots, Amer. Math. Monthly Vol. 84, No. 8, Oct. 1977, 629-630.
- Eric Weisstein's World of Mathematics, Pierce Expansion
Crossrefs
Programs
-
Mathematica
RecurrenceTable[{a[n] == a[n - 1]^3 - 3*a[n - 1], a[0] == 6}, a, {n, 0, 5}] (* G. C. Greubel, Dec 30 2016 *) NestList[#^3-3#&,6,5] (* Harvey P. Dale, Jul 23 2025 *)
Formula
a(n) = -2*cos(3^n*arccos(-3)).
From Peter Bala, Nov 13 2012: (Start)
a(n) = (3 + 2*sqrt(2))^(3^n) + (3 - 2*sqrt(2))^(3^n).
Product {n = 0..inf} (1 + 2/(a(n) - 1)) = sqrt(2).
(End)
Comments