cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A053028 Odd primes p with 4 zeros in any period of the Fibonacci numbers mod p.

Original entry on oeis.org

5, 13, 17, 37, 53, 61, 73, 89, 97, 109, 113, 137, 149, 157, 173, 193, 197, 233, 257, 269, 277, 293, 313, 317, 337, 353, 373, 389, 397, 421, 433, 457, 557, 577, 593, 613, 617, 653, 661, 673, 677, 701, 733, 757, 761, 773, 797, 821, 829, 853, 857, 877, 937, 953
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, primes that do not divide any Lucas number. - T. D. Noe, Jul 25 2003
Although every prime divides some Fibonacci number, this is not true for the Lucas numbers. In fact, exactly 1/3 of all primes do not divide any Lucas number. See Lagarias and Moree for more details. The Lucas numbers separate the primes into three disjoint sets: (A053028) primes that do not divide any Lucas number, (A053027) primes that divide Lucas numbers of even index and (A053032) primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003; revised by N. J. A. Sloane, Feb 21 2004
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 4.
For p > 2, p is in this sequence if and only if A001175(p) == 4 (mod 8), and if and only if A001177(p) is odd. For a proof of the equivalence between A001176(p) = 4 and A001177(p) being odd, see Section 2 of my link below.
This sequence contains all primes congruent to 13, 17 (mod 20). This corresponds to case (1) for k = 3 in the Conclusion of Section 1 of my link below. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | this seq | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Mathematica
    Lucas[n_] := Fibonacci[n+1] + Fibonacci[n-1]; badP={}; Do[p=Prime[n]; k=1; While[k0, k++ ]; If[k==p, AppendTo[badP, p]], {n, 200}]; badP

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i) is odd. - T. D. Noe, Jul 25 2003

Extensions

Edited: Name clarified. Moree and Renault link updated. Ballot and Elia reference linked. - Wolfdieter Lang, Jan 20 2015

A053032 Odd primes p with one zero in Fibonacci numbers mod p.

Original entry on oeis.org

11, 19, 29, 31, 59, 71, 79, 101, 131, 139, 151, 179, 181, 191, 199, 211, 229, 239, 251, 271, 311, 331, 349, 359, 379, 419, 431, 439, 461, 479, 491, 499, 509, 521, 541, 571, 599, 619, 631, 659, 691, 709, 719, 739, 751, 809, 811, 839, 859, 911, 919, 941, 971
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, odd primes that divide Lucas numbers of odd index. - T. D. Noe, Jul 25 2003
From Charles R Greathouse IV, Dec 14 2016: (Start)
It seems that this sequence contains about 1/3 of the primes. In particular, members of this sequence constitute:
35 of the first 10^2 primes
330 of the first 10^3 primes
3328 of the first 10^4 primes
33371 of the first 10^5 primes
333329 of the first 10^6 primes
3333720 of the first 10^7 primes
33333463 of the first 10^8 primes
etc. (End)
Of the Fibonacci-like sequences modulo a prime p that are not A000004, one of them has a period length less than A001175(p) if and only if p = 5 or p is in this sequence. - Isaac Saffold, Dec 18 2018
Odd primes in A053031. - Jianing Song, Jun 19 2019

Examples

			From _Michael B. Porter_, Jan 25 2019: (Start)
The Fibonacci numbers (mod 7) repeat the pattern 0, 1, 1, 2, 3, 5, 1, 6, 0, 6, 6, 5, 4, 2, 6, 1. Since there are two zeros, 7 is not in the sequence.
The Fibonacci numbers (mod 11) repeat the pattern 0, 1, 1, 2, 3, 5, 8, 2, 10, 1 which has only one zero, so 11 is in the sequence.
(End)
		

Crossrefs

Cf. A001175, A001177. See A112860 for another version.
Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+------------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027** | A309581 | A309587
Primes p such that w(p) = 4 | A053028*** | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also this sequence U {2}
** also primes dividing Lucas numbers of even index
*** also primes dividing no Lucas number

Programs

  • Mathematica
    Prime@ Rest@ Position[Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, Prime@ Range@ 168}], 1][[All, 1]] (* Michael De Vlieger, Aug 08 2018 *)
  • PARI
    fibmod(n,m)=(Mod([1, 1; 1, 0], m)^n)[1, 2]
    is(n)=my(k=n+[0, -1, 1, 1, -1][n%5+1]); k>>=valuation(k,2)-1; fibmod(k,n)==0 && fibmod(k/2,n) && isprime(n) \\ Charles R Greathouse IV, Dec 14 2016

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is odd. - T. D. Noe, Jul 25 2003

A053027 Odd primes p with 2 zeros in Fibonacci numbers mod p.

Original entry on oeis.org

3, 7, 23, 41, 43, 47, 67, 83, 103, 107, 127, 163, 167, 223, 227, 241, 263, 281, 283, 307, 347, 367, 383, 401, 409, 443, 449, 463, 467, 487, 503, 523, 547, 563, 569, 587, 601, 607, 641, 643, 647, 683, 727, 743, 769, 787, 823, 827, 863, 881, 883, 887, 907, 929
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Also, odd primes that divide Lucas numbers of even index. - T. D. Noe, Jul 25 2003
Primes in A053030. - Jianing Song, Jun 19 2019
From Jianing Song, Jun 16 2024: (Start)
Primes p such that A001176(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides of A001175(p), and if and only if 4 divides A001177(p). For a proof of the equivalence between A001176(p) = 2 and 4 dividing A001177(p), see Section 2 of my link below.
This sequence contains all primes congruent to 3, 7 (mod 20). This corresponds to case (2) for k = 3 in the Conclusion of Section 1 of my link below.
Conjecturely, this sequence has density 1/3 in the primes. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]

Crossrefs

Cf. A000204 (Lucas numbers), A001602 (index of the smallest Fibonacci number divisible by prime(n)).
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+-----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | this seq | A309581 | A309587
Primes p such that w(p) = 4 | A053028** | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 (primes dividing Lucas numbers of odd index) U {2}
** also primes dividing no Lucas number

Formula

A prime p = prime(i) is in this sequence if p > 2 and A001602(i)/2 is even. - T. D. Noe, Jul 25 2003

A053029 Numbers with 4 zeros in Fibonacci numbers mod m.

Original entry on oeis.org

5, 10, 13, 17, 25, 26, 34, 37, 50, 53, 61, 65, 73, 74, 85, 89, 97, 106, 109, 113, 122, 125, 130, 137, 146, 149, 157, 169, 170, 173, 178, 185, 193, 194, 197, 218, 221, 226, 233, 250, 257, 265, 269, 274, 277, 289, 293, 298, 305, 313, 314, 317, 325, 337, 338, 346
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is twice such an odd number.
A001176(a(n)) = A128924(a(n),1) = 4. - Reinhard Zumkeller, Jan 17 2014

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | this seq | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053029 n = a053029_list !! (n-1)
    a053029_list = filter ((== 4) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 17 2014

A053030 Numbers with 2 zeros in Fibonacci numbers mod m.

Original entry on oeis.org

3, 6, 7, 8, 9, 12, 14, 15, 16, 18, 20, 21, 23, 24, 27, 28, 30, 32, 33, 35, 36, 39, 40, 41, 42, 43, 45, 46, 47, 48, 49, 51, 52, 54, 55, 56, 57, 60, 63, 64, 66, 67, 68, 69, 70, 72, 75, 77, 78, 80, 81, 82, 83, 84, 86, 87, 88, 90, 91, 92, 93, 94, 95, 96, 98, 99, 100, 102, 103, 104
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

m is on this list iff m does not have 1 or 4 zeros in the Fibonacci sequence modulo m.
A001176(a(n)) = A128924(a(n),1) = 2. - Reinhard Zumkeller, Jan 17 2014

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | this seq | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053030 n = a053030_list !! (n-1)
    a053030_list = filter ((== 2) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 17 2014

A053031 Numbers with 1 zero in Fibonacci numbers mod m.

Original entry on oeis.org

1, 2, 4, 11, 19, 22, 29, 31, 38, 44, 58, 59, 62, 71, 76, 79, 101, 116, 118, 121, 124, 131, 139, 142, 151, 158, 179, 181, 191, 199, 202, 209, 211, 229, 236, 239, 242, 251, 262, 271, 278, 284, 302, 311, 316, 319, 331, 341, 349, 358, 359, 361, 362, 379, 382, 398
Offset: 1

Views

Author

Henry Bottomley, Feb 23 2000

Keywords

Comments

Conjecture: m is on this list iff m is an odd number all of whose factors are on this list or m is 2 or 4 times such an odd number.
A001176(a(n)) = A128924(a(n),1) = 1. - Reinhard Zumkeller, Jan 16 2014
Also numbers n such that A001175(n) = A001177(n). - Daniel Suteu, Aug 08 2018

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+---------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | this seq | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Haskell
    a053031 n = a053031_list !! (n-1)
    a053031_list = filter ((== 1) . a001176) [1..]
    -- Reinhard Zumkeller, Jan 16 2014
    
  • Mathematica
    With[{s = {1}~Join~Table[Count[Drop[NestWhile[Append[#, Mod[Total@ Take[#, -2], n]] &, {1, 1}, If[Length@ # < 3, True, Take[#, -2] != {1, 1}] &], -2], 0], {n, 2, 400}]}, Position[s, 1][[All, 1]] ] (* Michael De Vlieger, Aug 08 2018 *)
  • PARI
    entryp(p)=my(k=p+[0, -1, 1, 1, -1][p%5+1], f=factor(k)); for(i=1, #f[, 1],for(j=1, f[i, 2], if((Mod([1, 1; 1, 0], p)^(k/f[i, 1]))[1, 2], break); k/=f[i, 1])); k
    entry(n)=if(n==1, return(1)); my(f=factor(n), v); v=vector(#f~, i, if(f[i, 1]>1e14, entryp(f[i, 1]^f[i, 2]), entryp(f[i, 1])*f[i, 1]^(f[i, 2]-1))); if(f[1, 1]==2&&f[1, 2]>1, v[1]=3<Charles R Greathouse IV, Dec 14 2016

A261580 Primes p such that A214028(p) is odd.

Original entry on oeis.org

5, 13, 29, 37, 53, 61, 101, 109, 137, 149, 157, 173, 181, 197, 229, 269, 277, 293, 317, 349, 373, 389, 397, 421, 461, 509, 521, 541, 557, 569, 593, 613, 653, 661, 677, 701, 709, 733, 757, 773, 797, 821, 829, 853, 857, 877, 941, 953, 997, 1013, 1021, 1061, 1069
Offset: 1

Views

Author

Michel Marcus, Aug 25 2015

Keywords

Comments

From Jianing Song, Aug 13 2019: (Start)
Primes p with 4 zeros in a fundamental period of A000129 mod p, that is, primes p such that A214027(p) = 4. For a proof of the equivalence between A214027(p) = 4 and A214028(p) being odd, see Section 2 of my link below.
For p > 2, p is in this sequence if and only if A175181(p) == 4 (mod 8).
This sequence contains all primes congruent to 5 modulo 8. This corresponds to case (1) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 7/24 in the primes; see the end of Section 1 of my link. (End) [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 20 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Examples

			The smallest Pell number divisible by the prime 5 has index 3, which is odd, so 5 is in the sequence.
		

Crossrefs

Cf. also A175181.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | this seq | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • Mathematica
    f[n_] := Block[{k = 1}, While[Mod[Simplify[((1 + Sqrt@ 2)^k - (1 - Sqrt@ 2)^k)/(2 Sqrt@ 2)], n] != 0, k++]; k]; Select[Prime@ Range@ 180, OddQ@ f@ # &] (* Michael De Vlieger, Aug 25 2015 *)
  • PARI
    pell(n) = polcoeff(Vec(x/(1-2*x-x^2) + O(x^(n+1))), n);
    z(n) = {k=1; while (pell(k) % n, k++); k;}
    lista(nn) = {forprime(p=2, nn, if (z(p) % 2, print1(p, ", ")););}
    
  • PARI
    forprime(p=2, 1100, if(A214027(p)==4, print1(p, ", "))) \\ Jianing Song, Aug 13 2019

A309580 Primes p with 1 zero in a fundamental period of A000129 mod p.

Original entry on oeis.org

2, 7, 23, 31, 41, 47, 71, 79, 103, 127, 151, 167, 191, 199, 223, 239, 263, 271, 311, 313, 353, 359, 367, 383, 409, 431, 439, 457, 463, 479, 487, 503, 599, 607, 631, 647, 719, 727, 743, 751, 761, 809, 823, 839, 863, 887, 911, 919, 967, 983, 991, 1031, 1039, 1063, 1087, 1103, 1129, 1151, 1201, 1223, 1231, 1279
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A214027(p) = 1.
For p > 2, p is in this sequence if and only if A175181(p) == 2 (mod 4), and if and only if A214028(p) == 2 (mod 4). For a proof of the equivalence between A214027(p) = 1 and A214028(p) == 2 (mod 4), see Section 2 of my link below.
This sequence contains all primes congruent to 7 modulo 8. This corresponds to case (3) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 7/24 in the primes; see the end of Section 1 of my link. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | this seq | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 1300, if(A214027(p)==1, print1(p, ", ")))

A309581 Primes p with 2 zeros in a fundamental period of A000129 mod p.

Original entry on oeis.org

3, 11, 17, 19, 43, 59, 67, 73, 83, 89, 97, 107, 113, 131, 139, 163, 179, 193, 211, 227, 233, 241, 251, 257, 281, 283, 307, 331, 337, 347, 379, 401, 419, 433, 443, 449, 467, 491, 499, 523, 547, 563, 571, 577, 587, 601, 617, 619, 641, 643, 659, 673, 683, 691
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Primes p such that A214027(p) = 2.
For p > 2, p is in this sequence if and only if 8 divides A175181(p), and if and only if 4 divides A214028(p). For a proof of the equivalence between A214027(p) = 2 and 4 dividing A214028(p), see Section 2 of my link below.
This sequence contains all primes congruent to 3 modulo 8. This corresponds to case (2) for k = 6 in the Conclusion of Section 1 of my link below.
Conjecturely, since (k+2)/2 = 4 is a square, this sequence has density 5/12 in the primes; see the end of Section 1 of my link. [Comment rewritten by Jianing Song, Jun 16 2024 and Jun 25 2024]
The conjecture above is an analog of Hasse's result that the set {p prime : ord(2,p) is odd} has density 7/24 in the primes, where ord(a,m) is the multiplicative order of a modulo m; see A014663. - Jianing Song, Jun 26 2025

Crossrefs

Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | this seq | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | A309583 | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    forprime(p=2, 700, if(A214027(p)==2, print1(p, ", ")))

A309583 Numbers k with 1 zero in a fundamental period of A000129 mod k.

Original entry on oeis.org

1, 2, 4, 7, 8, 14, 16, 20, 23, 24, 28, 31, 32, 40, 41, 46, 47, 48, 49, 52, 56, 62, 64, 71, 72, 79, 80, 82, 88, 92, 94, 96, 98, 100, 103, 104, 112, 116, 120, 124, 127, 128, 140, 142, 144, 148, 151, 152, 158, 160, 161, 164, 167, 168, 176, 184, 188, 191, 192
Offset: 1

Views

Author

Jianing Song, Aug 10 2019

Keywords

Comments

Numbers k such that A214027(k) = 1.
The odd numbers k satisfy A175181(k) == 2 (mod 4).

Crossrefs

Cf. A175181.
Let {x(n)} be a sequence defined by x(0) = 0, x(1) = 1, x(n+2) = m*x(n+1) + x(n). Let w(k) be the number of zeros in a fundamental period of {x(n)} modulo k.
| m=1 | m=2 | m=3
-----------------------------+----------+----------+---------
The sequence {x(n)} | A000045 | A000129 | A006190
The sequence {w(k)} | A001176 | A214027 | A322906
Primes p such that w(p) = 1 | A112860* | A309580 | A309586
Primes p such that w(p) = 2 | A053027 | A309581 | A309587
Primes p such that w(p) = 4 | A053028 | A261580 | A309588
Numbers k such that w(k) = 1 | A053031 | this seq | A309591
Numbers k such that w(k) = 2 | A053030 | A309584 | A309592
Numbers k such that w(k) = 4 | A053029 | A309585 | A309593
* and also A053032 U {2}

Programs

  • PARI
    for(k=1, 200, if(A214027(k)==1, print1(k, ", ")))
Showing 1-10 of 20 results. Next