A063865 Number of solutions to +- 1 +- 2 +- 3 +- ... +- n = 0.
1, 0, 0, 2, 2, 0, 0, 8, 14, 0, 0, 70, 124, 0, 0, 722, 1314, 0, 0, 8220, 15272, 0, 0, 99820, 187692, 0, 0, 1265204, 2399784, 0, 0, 16547220, 31592878, 0, 0, 221653776, 425363952, 0, 0, 3025553180, 5830034720, 0, 0, 41931984034, 81072032060, 0, 0
Offset: 0
Examples
From _Gus Wiseman_, Jul 04 2019: (Start) For example, the a(0) = 1 through a(8) = 14 subsets (empty columns not shown) are: {} {3} {1,4} {1,6,7} {3,7,8} {1,2} {2,3} {2,5,7} {4,6,8} {3,4,7} {5,6,7} {3,5,6} {1,2,7,8} {1,2,4,7} {1,3,6,8} {1,2,5,6} {1,4,5,8} {1,3,4,6} {1,4,6,7} {2,3,4,5} {2,3,5,8} {2,3,6,7} {2,4,5,7} {3,4,5,6} {1,2,3,4,8} {1,2,3,5,7} {1,2,4,5,6} (End)
Links
- T. D. Noe, N. J. A. Sloane and Ray Chandler, Table of n, a(n) for n = 0..3339 (terms < 10^1000, first 101 terms from T. D. Noe, next 300 terms from N. J. A. Sloane)
- Dorin Andrica and Ovidiu Bagdasar, On k-partitions of multisets with equal sums, The Ramanujan J. (2021) Vol. 55, 421-435.
- Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Ţurcaş, The Number of Partitions of a Set and Superelliptic Diophantine Equations, Disc. Math. and Applications, Springer, Cham (2020), 35-55.
- D. Andrica and E. J. Ionascu, Variations on a result of Erdős and Surányi, INTEGERS 2013 slides.
- D. Andrica and I. Tomescu, On an Integer Sequence Related to a Product of Trigonometric Functions, and Its Combinatorial Relevance, J. Integer Seq., 5 (2002), Article 02.2.4
- Ovidiu Bagdasar and Dorin Andrica, New results and conjectures on 2-partitions of multisets, 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO).
- Steven R. Finch, Signum equations and extremal coefficients, February 7, 2009. [Cached copy, with permission of the author]
- B. D. Sullivan, On a Conjecture of Andrica and Tomescu, J. Int. Sequences, 16 (2013), Article 13.3.1.
- zbMATH, Review of Andrica and Tomescu
Crossrefs
Programs
-
Maple
M:=400; t1:=1; lprint(0,1); for n from 1 to M do t1:=expand(t1*(x^n+1/x^n)); lprint(n, coeff(t1,x,0)); od: # N. J. A. Sloane, Jul 07 2008
-
Mathematica
f[n_, s_] := f[n, s]=Which[n==0, If[s==0, 1, 0], Abs[s]>(n*(n+1))/2, 0, True, f[ n-1, s-n]+f[n-1, s+n]]; a[n_] := f[n, 0] nmax = 50; d = {1}; a1 = {}; Do[ i = Ceiling[Length[d]/2]; AppendTo[a1, If[i > Length[d], 0, d[[i]]]]; d = PadLeft[d, Length[d] + 2 n] + PadRight[d, Length[d] + 2 n]; , {n, nmax}]; a1 (* Ray Chandler, Mar 13 2014 *)
-
PARI
a(n)=my(x='x); polcoeff(prod(k=1,n,x^k+x^-k)+O(x),0) \\ Charles R Greathouse IV, May 18 2015
-
PARI
a(n)=0^n+floor(prod(k=1,n,2^(n*k)+2^(-n*k)))%(2^n) \\ Tani Akinari, Mar 09 2016
Formula
Asymptotic formula: a(n) ~ sqrt(6/Pi)*n^(-3/2)*2^n for n = 0 or 3 (mod 4) as n approaches infinity.
a(n) = 0 unless n == 0 or 3 (mod 4).
a(n) = constant term in expansion of Product_{ k = 1..n } (x^k + 1/x^k). - N. J. A. Sloane, Jul 07 2008
If n = 0 or 3 (mod 4) then a(n) = coefficient of x^(n(n+1)/4) in Product_{k=1..n} (1+x^k). - D. Andrica and I. Tomescu.
a(n) = 2*A058377(n) for any n > 0. - Rémy Sigrist, Oct 11 2017
Extensions
More terms from Dean Hickerson, Aug 28 2001
Corrected and edited by Steven Finch, Feb 01 2009
Comments