A113519 Semiprimes in A056105.
9, 22, 134, 177, 226, 482, 737, 1046, 1282, 1681, 1977, 2641, 3202, 3401, 3817, 4034, 4486, 5462, 5721, 6817, 7401, 7702, 8966, 9634, 9977, 10681, 11042, 11409, 12937, 15409, 16726, 17177, 18566, 21506, 28617, 29801
Offset: 1
Examples
A056105(44) = 3*44^2 - 2*44 + 1 = 5721 = 3 * 1907 which is a semiprime. A056105(24) = 3*24^2 - 2*24 + 1 = 1681 = 41^2 which is a semiprime (the two prime factors need not be distinct). A056105(100) = 3*100^2 - 2*100 + 1 = 29801 = 17 * 1753, which is a semiprime.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
Programs
-
Maple
for n from 0 to 300 do s := 3*n^2-2*n+1 ; if isA001358(s) then printf("%d,",s) ; end if; end do: # R. J. Mathar, Jun 30 2020
-
Mathematica
Select[Array[3 #^2 - 2 # + 1 &, 100], PrimeOmega[#] == 2 &] (* Michael De Vlieger, Mar 17 2021 *)
Comments