A056105
First spoke of a hexagonal spiral.
Original entry on oeis.org
1, 2, 9, 22, 41, 66, 97, 134, 177, 226, 281, 342, 409, 482, 561, 646, 737, 834, 937, 1046, 1161, 1282, 1409, 1542, 1681, 1826, 1977, 2134, 2297, 2466, 2641, 2822, 3009, 3202, 3401, 3606, 3817, 4034, 4257, 4486, 4721, 4962, 5209, 5462, 5721, 5986, 6257
Offset: 0
The spiral begins:
49--48--47--46--45
/ \
50 28--27--26--25 44
/ / \ \
51 29 13--12--11 24 43
/ / / \ \ \
52 30 14 4---3 10 23 42 67
/ / / / \ \ \ \ \
53 31 15 5 1===2===9==22==41==66==>
\ \ \ \ / / / /
54 32 16 6---7---8 21 40 65
\ \ \ / / /
55 33 17--18--19--20 39 64
\ \ / /
56 34--35--36--37--38 63
\ /
57--58--59--60--61--62
-
List([0..50], n -> 3*n^2-2*n+1); # G. C. Greubel, Dec 02 2018
-
[3*n^2-2*n+1: n in [0..50]]; // Wesley Ivan Hurt, Jul 06 2014
-
A056105:=n->3*n^2 - 2*n + 1: seq(A056105(n), n=0..50); # Wesley Ivan Hurt, Jul 06 2014
-
LinearRecurrence[{3, -3, 1}, {1, 2, 9}, 50] (* Harvey P. Dale, Nov 02 2011 *)
Table[3 n^2 - 2 n + 1, {n, 0, 20}] (* Eric W. Weisstein, Nov 29 2017 *)
CoefficientList[Series[(-1 + x - 6 x^2)/(-1 + x)^3, {x, 0, 20}], x] (* Eric W. Weisstein, Nov 29 2017 *)
-
a(n)=3*n^2-2*n+1 /* Michael Somos, Aug 03 2006 */
-
[3*n^2-2*n+1 for n in range(50)] # G. C. Greubel, Dec 02 2018
Original entry on oeis.org
25, 141, 185, 235, 291, 753, 851, 955, 1565, 1851, 2495, 3235, 3641, 4295, 5251, 5765, 6031, 6865, 8061, 9353, 9691, 10741, 11103, 14215, 14631, 15481, 16355, 16801, 17711, 21085, 25855, 27553, 28131, 28715, 29305, 29901
Offset: 1
a(1) = 25 because A056106(3) = 25 = 5^2 is semiprime.
a(36) = 29901 because A056106(100) = 29901 = 3 * 9967 is semiprime.
Original entry on oeis.org
91, 169, 217, 469, 721, 817, 1027, 1141, 1261, 1387, 2611, 2977, 3781, 3997, 4681, 5677, 5941, 6487, 6769, 7651, 7957, 8587, 9577, 10981, 11347, 12481, 12871, 14077, 14491, 15769, 16207, 17557, 18019, 18961, 20419, 20917, 21421, 22969, 24031
Offset: 1
a(1) = 91 because A003215(5) = (5+1)^3 - 5^3 = 91 = 7 * 13 is semiprime.
a(7) = 121 because A003215(7) = (7+1)^3 - 7^3 = 169 = 13^2 is semiprime; the two prime factors need not be distinct.
Original entry on oeis.org
4, 49, 301, 589, 973, 2353, 2701, 3073, 4333, 5293, 5809, 6349, 6913, 7501, 8749, 9409, 10801, 11533, 13069, 14701, 15553, 16429, 23233, 24301, 25393, 27649, 30001
Offset: 1
a(1) = 4 because A056107(1) = 3*1^2 + 1 = 4 = 2^2 is semiprime.
a(16) = 9409 because A056107(56) = 3*56^2 + 1 = 9409 = 97^2 is semiprime.
a(27) = 30001 because A056107(100) = 3*100^2 + 1 = 30001 = 19 * 1579 is semiprime.
Original entry on oeis.org
15, 115, 155, 201, 253, 445, 785, 1345, 2215, 3503, 3711, 4145, 4841, 5853, 6395, 7855, 9131, 12353, 13535, 14353, 16503, 18331, 19281, 20255, 20751, 21253, 21761, 23853, 24935, 26603, 29503, 30101
Offset: 1
a(1) = 15 because A056108(2) = 15 = 3 * 5 is semiprime.
a(2) = 115 because A056108(6) = 115 = 5 * 23 is semiprime.
a(32) = 30101 because A056108(100) = 30101 = 31 * 971 is semiprime.
Original entry on oeis.org
6, 34, 57, 86, 121, 209, 262, 321, 386, 706, 1241, 1366, 1497, 2582, 2761, 3334, 3746, 3961, 4881, 5377, 6166, 6722, 7009, 7601, 8857, 9862, 10562, 10921, 12417, 13201, 14422, 15697, 17026, 17481, 17942, 18409, 19361, 19846, 20337, 21337, 22361
Offset: 1
a(1) = 6 because A056109(1) = 3*1^2 + 2*1 + 1 = 6 = 2 * 3 is semiprime.
A113653
Isolated semiprimes in the hexagonal spiral.
Original entry on oeis.org
6, 51, 69, 82, 91, 183, 194, 221, 249, 265, 287, 289, 309, 314, 319, 323, 355, 371, 403, 417, 437, 469, 478, 511, 517, 519, 533, 579, 589, 649, 681, 689, 731, 749, 758, 807, 838, 849, 926, 943, 951, 961, 965, 979, 1011, 1018, 1037, 1055, 1057, 1067, 1077, 1099, 1126, 1145, 1149, 1154, 1159
Offset: 1
The spiral begins:
120-119-118-117-116-115-114
/ \
121 85--84--83-*82*-81--80 113
/ / \ \
122 86 56--55--54--53--52 79 112
/ / / \ \ \
123 87 57 33--32--31--30 *51* 78 111
/ / / / \ \ \ \
124 88 58 34 16--15--14 29 50 77 110
/ / / / / \ \ \ \ \
125 89 59 35 17 5---4 13 28 49 76 109
/ / / / / / \ \ \ \ \ \
126 90 60 36 18 *6* 0 3 12 27 48 75 108
/ / / / / / / / / / / / /
127 *91* 61 37 19 7 1---2 11 26 47 74 107 146
\ \ \ \ \ \ / / / / / /
128 92 62 38 20 8---9--10 25 46 73 106 145
\ \ \ \ \ / / / / /
129 93 63 39 21--22--23--24 45 72 105 144
\ \ \ \ / / / /
130 94 64 40--41--42--43--44 71 104 143
\ \ \ / / /
131 95 65--66--67--68-*69*-70 103 142
\ \ / /
132 96--97--98--99-100-101-102 141
\ /
133-134-135-136-137-138-139-140
- Abbott, P. (Ed.). "Mathematica One-Liners: Spiral on an Integer Lattice." Mathematica J. 1, 39, 1990.
For the sequence of isolated primes see
A335916.
Related sequences:
A113519 Semiprimes in 1st spoke of a hexagonal spiral starting at 1 (
A056105).
Corrected and edited by
N. J. A. Sloane, Jun 27 2020. Thanks to Jeffrey K. Aronson for pointing out the error in the original submission.
Original entry on oeis.org
6, 51, 55, 69, 82, 183, 194, 249, 259, 287, 309, 314, 319
Offset: 1
Copy this as proportionally spaced text, make semiprimes bold, draw boundaries around clumps of adjacent semiprimes. For example, there is a triangular clump of three semiprimes: {4, 14, 15}; a linear clump of three semiprimes {49, 77, 111}; a linear clump of two semiprimes {247, 305}; an irregular clump of seven {115, 155, 201, 202, 203, 253, 254}; a clump of eighteen whose least element is 33 and greatest is 206; and a long branching clump of sixteen whose least element is 9 and greatest is 129.
.................209.208.207.206.205.204.203.202.201
................210.162.161.160.159.158.157.156.155.200
..............211.163.121.120.119.118.117.116.115.154.199
............212.164.122.86..85..84..83..82..81.114.153.198
..........213.165.123.87..57..56..55..54..53..80.113.152.197
........214.166.124.88..58..33..32..31..30..52..79.112.151.196
......215.167.125.89..59..34..16..15..14..29..51..78.111.150.195
....216.168.126.90..60..35..17..5...4...13..28..50..77.110.149.194
..217.169.127.91..61..36..18..6...0...3...12..27..49..76.109.148.193
218.170.128.92..62..37..19..7...1...2...11..26..48..75.108.147.192.243
..219.171.129.93..63..38..20..8...9...10..25..47..74.107.146.191.242
....220.172.130.94..64..39..21..22..23..24..46..73.106.145.190.241
......221.173.131.95..65..40..41..42..43..45..72.105.144.189.240
........222.174.132.96..66..67..68..69..70..71.104.143.188.239
..........223.175.133.97..98..99.100.101.102.103.142.187.238
............224.176.134.135.136.137.138.139.140.141.186.237
..............225.177.178.179.180.181.182.183.184.185.236
................226.227.228.229.230.231.232.233.234.235
- Abbott, P. (Ed.). "Mathematica One-Liners: Spiral on an Integer Lattice." Mathematica J. 1, 39, 1990.
Cf.
A001358,
A001399,
A003215,
A056105-
A056109,
A113688,
A113519,
A113524,
A113525,
A113528,
A113527,
A113530,
A113688.
A343423
Prime numbers p such that Euclidean distance from origin to p in hexagonal grid sets a new record. Number '1' is placed at the origin and '2' at (1, 0). Number 'm' (m >= 3) is placed by moving one unit forward in the direction from 'm-2' to 'm-1', if m - 1 is not a prime; otherwise, making 1/6 turn counterclockwise at 'm-1' followed by moving one unit forward.
Original entry on oeis.org
2, 3, 5, 7, 11, 29, 31, 59, 89, 127, 131, 157, 191, 193, 223, 227, 251, 257, 409, 521, 719, 757, 797, 809, 877, 881, 967, 971, 1009, 1013, 1049, 1087, 1091, 1117, 1123, 1277, 1301, 1361, 1409, 1423, 1447, 1451, 1523, 1531, 1657, 1693, 1697, 1699, 5273, 5323
Offset: 1
Hexagonal grid with integers up to 85:
29<---28<---27<---26<-7,25<=6,24<==5/23
/ / \\
30 8 4/22
/ / \\
31,53<-52<---51<---50<--9,49<--48<---47 3,21
/ \ / \ / \
54 32 10 1,46--->2 20
/ \ / \ \
55,79<--78<-33,77<--76<-11,75<--74<---73 45 19
// \ \ \ \ /
56,80 34 12 72 44 18
// \ \ \ / \ /
57,81 35 13--->14->15,71-->16-->17,43
// \ / /
58,82 36 70 42
// \ / /
59,83 37--->38->39,69-->40--->41
\\ /
60,84 68
\\ /
61,85--->62--->63--->64--->65--->66--->67
Prime number (p), square of the distance (s) from p to origin, and index (n) in the sequence for p up to 71 are:
p: 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61 67 71
s: 1 3 7 9 13 13 9 7 7 37 43 31 19 9 1 43 109 109 43 7
n: 1 2 3 4 5 -- -- -- -- 6 7 -- -- -- -- -- 8 -- -- --
-
from sympy import isprime
dx = [2, 1, -1, -2, -1, 1]; dy = [0, 1, 1, 0, -1, -1]
x = 0; y = 0; rec = 0; d = 0
for n in range(2, 10001):
if isprime(n-1) == 1: d += 1; d %= 6
x += dx[d]; y += dy[d]; s = x*x + 3*y*y
if isprime(n) == 1 and s > rec: print(n); rec = s
Showing 1-9 of 9 results.
Comments