cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113655 Reverse blocks of three in the sequence of natural numbers.

Original entry on oeis.org

3, 2, 1, 6, 5, 4, 9, 8, 7, 12, 11, 10, 15, 14, 13, 18, 17, 16, 21, 20, 19, 24, 23, 22, 27, 26, 25, 30, 29, 28, 33, 32, 31, 36, 35, 34, 39, 38, 37, 42, 41, 40, 45, 44, 43, 48, 47, 46, 51, 50, 49, 54, 53, 52, 57, 56, 55, 60, 59, 58, 63, 62, 61, 66, 65, 64, 69, 68, 67, 72, 71, 70
Offset: 1

Views

Author

Parag D. Mehta (pmehta23(AT)gmail.com), Jan 16 2006

Keywords

Crossrefs

Programs

  • Magma
    I:=[3,2,1,6]; [n le 4 select I[n] else Self(n-1)+Self(n-3)-Self(n-4): n in [1..80]]; // Vincenzo Librandi, Sep 28 2017
  • Maple
    seq(6*floor((n+2)/3)-n-2,n=1..72); # Dennis P. Walsh, Aug 16 2013
  • Mathematica
    f[n_] := Switch[ Mod[n, 3], 0, n - 2, 1, n + 2, 2, n]; Array[f, 72] (* Robert G. Wilson v, Jan 18 2006 *)
    LinearRecurrence[{1, 0, 1, -1}, {3, 2, 1, 6}, 100] (* or *) CoefficientList[Series[(3 - x - x^2 + 2 x^3) / ((1 + x + x^2) (1 - x)^2), {x, 0, 80}], x] (* Vincenzo Librandi, Sep 28 2017 *)
    Reverse/@Partition[Range[81],3]//Flatten (* Harvey P. Dale, Oct 11 2020 *)
  • PARI
    a(n)=2+n-2*((n+2)%3); \\ Jaume Oliver Lafont, Mar 25 2009
    

Formula

a(n) = 3*floor((n+2)/3) - (n-1) mod 3. - Robert G. Wilson v and Zak Seidov, Jan 20 2006
a(n) = a(n-3)+3 = a(n-1)+a(n-3)-a(n-4). - Jaume Oliver Lafont, Dec 02 2008
G.f.: (3*x - x^2 - x^3 + 2*x^4)/(1 - x - x^3 + x^4) = x*(3 - x - x^2 + 2*x^3)/((1 + x + x^2)*(1-x)^2). - Jaume Oliver Lafont, Mar 25 2009
a(n) = 6*floor((n+2)/3) - n - 2. - Dennis P. Walsh, Aug 16 2013
a(n) = A000027(n) + 2 * A057078(n+2). - Dennis P. Walsh, Aug 16 2013
a(n) = n + 2 * A079918(n-1) - 2 * A079918(n). - Dennis P. Walsh, Aug 16 2013
a(n) = n - 2*A049347(n). - Wesley Ivan Hurt, Sep 27 2017, simplified Jun 30 2020
Sum_{n>=1} (-1)^(n+1)/a(n) = log(2). - Amiram Eldar, Jan 31 2023

Extensions

More terms from Robert G. Wilson v, Jan 18 2006