cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A113804 Numbers that are congruent to 4 or 10 mod 14.

Original entry on oeis.org

4, 10, 18, 24, 32, 38, 46, 52, 60, 66, 74, 80, 88, 94, 102, 108, 116, 122, 130, 136, 144, 150, 158, 164, 172, 178, 186, 192, 200, 206, 214, 220, 228, 234, 242, 248, 256, 262, 270, 276, 284, 290, 298, 304, 312, 318, 326, 332, 340, 346, 354, 360
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

Fourth row of the 7-rowed array A113807. - Giovanni Teofilatto, Oct 26 2009 [crossref added by Wolfdieter Lang, Dec 15 2011]

Crossrefs

Programs

  • Mathematica
    Select[Range[2,400,2],MemberQ[{4,10},Mod[#,14]]&] (* or *) LinearRecurrence[{1,1,-1},{4,10,18},60] (* Harvey P. Dale, Jan 08 2023 *)
  • PARI
    a(n)=7*n-((-1)^n+7)/2 \\ Charles R Greathouse IV, Dec 27 2011

Formula

From R. J. Mathar, Aug 13 2008: (Start)
a(n) = 7n - ((-1)^n + 7)/2.
G.f.: 2x*(2 + 3x + 2x^2)/((1-x)^2*(1+x)). (End)
a(n) = 14*n - a(n-1) - 14 (with a(1)=4). - Vincenzo Librandi, Aug 01 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
E.g.f.: 4 + ((14*x - 7)*exp(x) - exp(-x))/2. - David Lovler, Sep 04 2022
a(n) = 2*A047385(n). - Michel Marcus, Sep 05 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(Pi/7)/2.
Product_{n>=1} (1 + (-1)^n/a(n)) = tan(3*Pi/14). (End)

Extensions

More terms from Neven Juric, Apr 10 2008