cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A113801 Numbers that are congruent to {1, 13} mod 14.

Original entry on oeis.org

1, 13, 15, 27, 29, 41, 43, 55, 57, 69, 71, 83, 85, 97, 99, 111, 113, 125, 127, 139, 141, 153, 155, 167, 169, 181, 183, 195, 197, 209, 211, 223, 225, 237, 239, 251, 253, 265, 267, 279, 281, 293, 295, 307, 309, 321, 323, 335, 337, 349, 351, 363, 365, 377, 379
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

If 14k+1 is a perfect square..(0,12,16,52,60,120..) then the square root of 14k+1 = a(n) - Gary Detlefs, Feb 22 2010
More generally, these numbers are of the form (2*h*n+(h-4)*(-1)^n-h)/4 (h, n natural numbers), therefore ((2*h*n+(h-4)*(-1)^n-h)/4)^2-1==0 (mod h); in our case, a(n)^2-1==0 (mod 14). Also a(n)^2-1==0 (mod 28). - Bruno Berselli, Oct 26 2010 - Nov 17 2010

Crossrefs

Programs

  • Haskell
    a113801 n = a113801_list !! (n-1)
    a113801_list = 1 : 13 : map (+ 14) a113801_list
    -- Reinhard Zumkeller, Jan 07 2012
    
  • Mathematica
    LinearRecurrence[{1,1,-1},{1,13,15},60] (* or *) Select[Range[500], MemberQ[{1,13},Mod[#,14]]&] (* Harvey P. Dale, May 11 2011 *)
  • PARI
    a(n)=n\2*14-(-1)^n \\ Charles R Greathouse IV, Sep 15 2015

Formula

a(n) = 14*(n-1)-a(n-1), n>1. - R. J. Mathar, Jan 30 2010
From Bruno Berselli, Oct 26 2010: (Start)
a(n) = -a(-n+1) = (14*n+5*(-1)^n-7)/2.
G.f.: x*(1+12*x+x^2)/((1+x)*(1-x)^2).
a(n) = a(n-2)+14 for n>2.
a(n) = 14*A000217(n-1)+1 - 2*sum[i=1..n-1] a(i) for n>1. (End)
a(0)=1, a(1)=13, a(2)=15, a(n)=a(n-1)+a(n-2)-a(n-3). - Harvey P. Dale, May 11 2011
Sum_{n>=1} (-1)^(n+1)/a(n) = (Pi/14)*cot(Pi/14). - Amiram Eldar, Dec 04 2021
E.g.f.: 1 + ((14*x - 7)*exp(x) + 5*exp(-x))/2. - David Lovler, Sep 04 2022
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*cos(Pi/14).
Product_{n>=2} (1 + (-1)^n/a(n)) = (Pi/14)*cosec(Pi/14). (End)

Extensions

Corrected and extended by Giovanni Teofilatto, Nov 14 2008
Replaced the various formulas by a correct one - R. J. Mathar, Jan 30 2010

A113807 Permutation of natural numbers generated by 7-rowed array shown below.

Original entry on oeis.org

1, 13, 2, 15, 12, 3, 27, 16, 11, 4, 29, 26, 17, 10, 5, 41, 30, 25, 18, 9, 6, 43, 40, 31, 24, 19, 8, 7, 55, 44, 39, 32, 23, 20, 14, 57, 54, 45, 38, 33, 22, 21, 69, 58, 53, 46, 37, 34, 28, 71, 68, 59, 52, 47, 36, 35, 83, 72, 67, 60, 51, 48, 42, 85, 82, 73, 66, 61, 50, 49
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Comments

For such arrays A_k see the k-family of 2k-periodic sequences P_k defined in a comment on A203571. There the k residue classes mod n have been defined. The present array is A_7 if the last class, starting with 7, is taken as first class [0] after adding a 0 in front. Then one obtains a permutation of the nonnegative integers. However, each complete residue class also includes its negative members. - Wolfdieter Lang, Feb 02 2012

Examples

			1 13 15 27 29 41 43 55 57 69 71 83 85 ... (A113801)
2 12 16 26 30 40 44 54 58 68 72 82 86 ... (A113802)
3 11 17 25 31 39 45 53 59 67 73 81 87 ... (A113803)
4 10 18 24 32 38 46 52 60 66 74 80 88 ... (A113804)
5  9 19 23 33 37 47 51 61 65 75 70 89 ... (A113805)
6  8 20 22 34 36 48 50 62 64 76 78 90 ... (A113806)
7 14 21 28 35 42 49 56 63 70 77 84 91 ... (A008589)
		

Crossrefs

Extensions

A-numbers added for array rows by Wolfdieter Lang, Dec 15 2011
More terms from Ray Chandler, Dec 15 2011

A193053 a(n) = (14*n*(n+3) + (2*n-5)*(-1)^n + 21)/16.

Original entry on oeis.org

1, 5, 10, 17, 26, 36, 49, 62, 79, 95, 116, 135, 160, 182, 211, 236, 269, 297, 334, 365, 406, 440, 485, 522, 571, 611, 664, 707, 764, 810, 871, 920, 985, 1037, 1106, 1161, 1234, 1292, 1369, 1430, 1511, 1575, 1660, 1727, 1816, 1886, 1979, 2052, 2149, 2225, 2326
Offset: 0

Views

Author

Bruno Berselli, Oct 20 2011 - based on remarks and sequences by Omar E. Pol

Keywords

Comments

For an origin of this sequence, see the numerical spiral illustrated in the Links section.

Crossrefs

Cf. A195020 (vertices of the numerical spiral in link).

Programs

  • Magma
    [(14*n*(n+3)+(2*n-5)*(-1)^n+21)/16: n in [0..50]];
  • Mathematica
    Table[(14*n*(n + 3) + (2*n - 5)*(-1)^n + 21)/16, {n, 0, 50}] (* Vincenzo Librandi, Mar 26 2013 *)
    LinearRecurrence[{1,2,-2,-1,1},{1,5,10,17,26},60] (* Harvey P. Dale, Jun 19 2020 *)
  • PARI
    for(n=0, 50, print1((14*n*(n+3)+(2*n-5)*(-1)^n+21)/16", "));
    

Formula

O.g.f.: (1 + 4*x + 3*x^2 - x^3)/((1 + x)^2*(1 - x)^3).
E.g.f.: (1/16)*((21 + 56*x + 14*x^2)*exp(x) - (5 + 2*x)*exp(-x)). - G. C. Greubel, Aug 19 2017
a(n) = A195020(n) + n + 1.
a(n) - a(-n-1) = A047336(n+1).
a(n+1) - a(-n) = A113804(n+1).
a(n+2) - a(n) = A047385(n+3).
a(n+4) - a(n) = A113803(n+4).
a(2*n) + a(2*n-1) = A069127(n+1).
a(2*n) - a(2*n-1) = A016813(n).
a(2*n+1) - a(2*n) = A016777(n+1).
a(n+2) + 2*a(n+1) + a(n) = A024966(n+2).

A047385 Numbers that are congruent to {2, 5} mod 7.

Original entry on oeis.org

2, 5, 9, 12, 16, 19, 23, 26, 30, 33, 37, 40, 44, 47, 51, 54, 58, 61, 65, 68, 72, 75, 79, 82, 86, 89, 93, 96, 100, 103, 107, 110, 114, 117, 121, 124, 128, 131, 135, 138, 142, 145, 149, 152, 156, 159, 163, 166, 170
Offset: 1

Views

Author

Keywords

Comments

Also, numbers n such that (n^2+3)/7 is a nonnegative integer. - Bruno Berselli, Jan 16 2016

Crossrefs

Programs

Formula

G.f.: x*(2 + 3*x + 2*x^2) / ( (1+x)*(x-1)^2 ). - R. J. Mathar, Dec 05 2011
a(n) = (14*n - (-1)^n - 7)/4. - Bruno Berselli, Dec 05 2011
a(n) = 4*n - 2 - floor(n/2). - Wesley Ivan Hurt, Oct 16 2013
E.g.f.: 2 + ((14*x - 7)*exp(x) - exp(-x))/4. - David Lovler, Sep 01 2022
From Amiram Eldar, Sep 26 2022: (Start)
a(n) = A113804(n)/2.
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(3*Pi/14)*Pi/7. (End)
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 2*sin(3*Pi/14) (A255249).
Product_{n>=1} (1 + (-1)^n/a(n)) = 1/(2*cos(Pi/7)) (A255240). (End)

A113803 Numbers that are congruent to {3, 11} mod 14.

Original entry on oeis.org

3, 11, 17, 25, 31, 39, 45, 53, 59, 67, 73, 81, 87, 95, 101, 109, 115, 123, 129, 137, 143, 151, 157, 165, 171, 179, 185, 193, 199, 207, 213, 221, 227, 235, 241, 249, 255, 263, 269, 277, 283, 291, 297, 305, 311, 319, 325, 333, 339, 347, 353, 361, 367
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    {3+#,11+#}&/@(14*Range[0,30])//Flatten (* Harvey P. Dale, Jun 28 2020 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 3). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7-(-1)^n)/2.
O.g.f.: x*(3+8*x+3*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(3*Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cot(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = sin(Pi/7)*cosec(3*Pi/14). (End)

A113802 Numbers that are congruent to {2, 12} mod 14.

Original entry on oeis.org

2, 12, 16, 26, 30, 40, 44, 54, 58, 68, 72, 82, 86, 96, 100, 110, 114, 124, 128, 138, 142, 152, 156, 166, 170, 180, 184, 194, 198, 208, 212, 222, 226, 236, 240, 250, 254, 264, 268, 278, 282, 292, 296, 306, 310, 320, 324, 334, 338, 348, 352, 362, 366, 376, 380
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[400],MemberQ[{2,12},Mod[#,14]]&] (* Harvey P. Dale, Oct 30 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 2). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7-3*(-1)^n)/2.
O.g.f.: 2*x*(1+5*x+x^2)/((1+x)*(1-x)^2).
See the contribution of Bruno Berselli under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = cot(Pi/7)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = cosec(Pi/7)*sin(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/7)*sin(Pi/14). (End)

A113805 Numbers that are congruent to {5, 9} mod 14.

Original entry on oeis.org

5, 9, 19, 23, 33, 37, 47, 51, 61, 65, 75, 79, 89, 93, 103, 107, 117, 121, 131, 135, 145, 149, 159, 163, 173, 177, 187, 191, 201, 205, 215, 219, 229, 233, 243, 247, 257, 261, 271, 275, 285, 289, 299, 303, 313, 317, 327, 331, 341, 345, 355, 359, 369
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[Table[14n + {5, 9}, {n, 0, 28}]] (* Alonso del Arte, Dec 15 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 5). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7+3*(-1)^n)/2.
O.g.f.: x*(5+4*x+5*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/7)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = 4*sin(Pi/7)*sin(3*Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = 2*sin(Pi/7). (End)

A113806 Numbers that are congruent to {6, 8} mod 14.

Original entry on oeis.org

6, 8, 20, 22, 34, 36, 48, 50, 62, 64, 76, 78, 90, 92, 104, 106, 118, 120, 132, 134, 146, 148, 160, 162, 174, 176, 188, 190, 202, 204, 216, 218, 230, 232, 244, 246, 258, 260, 272, 274, 286, 288, 300, 302, 314, 316, 328, 330, 342, 344, 356, 358, 370
Offset: 1

Views

Author

Giovanni Teofilatto, Jan 22 2006

Keywords

Crossrefs

Programs

  • Mathematica
    Flatten[# + {6, 8} &/@ (14 Range[0, 30])] (* Harvey P. Dale, Jan 11 2011 *)

Formula

a(n) = 14*n - a(n-1) - 14 (with a(1) = 6). - Vincenzo Librandi, Nov 13 2010
From Wolfdieter Lang, Dec 15 2011: (Start)
a(n) = 7*n-(7+5*(-1)^n)/2.
O.g.f.: 2*x*(3+x+3*x^2)/((1+x)*(1-x)^2).
See the Bruno Berselli contribution under A113801. (End)
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(Pi/14)*Pi/14. - Amiram Eldar, Dec 30 2021
From Amiram Eldar, Nov 25 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = sec(Pi/14).
Product_{n>=1} (1 + (-1)^n/a(n)) = cosec(Pi/7)*cosec(3*Pi/14)/4. (End)

A164131 Numbers k such that k^2 == 2 (mod 31).

Original entry on oeis.org

8, 23, 39, 54, 70, 85, 101, 116, 132, 147, 163, 178, 194, 209, 225, 240, 256, 271, 287, 302, 318, 333, 349, 364, 380, 395, 411, 426, 442, 457, 473, 488, 504, 519, 535, 550, 566, 581, 597, 612, 628, 643, 659, 674, 690, 705, 721, 736, 752, 767, 783, 798, 814
Offset: 1

Views

Author

Vincenzo Librandi, Aug 11 2009

Keywords

Comments

Sequences of the type n^2 == 2 (mod m) are basically defined for each m of A057126. See A047341 (m=7), A113804 (m=14), A155449 (m=17), A155450 (m=23), A158803 (m=41) etc. - R. J. Mathar, Aug 26 2009

Examples

			At n= 4, a(4)=(31-1+186)/4=54. At n=5, a(5)=(31+1+248)/4=70.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[850],Mod[#^2,31]==2&]  (* Harvey P. Dale, Feb 04 2011 *)
  • PARI
    isok(k) = Mod(k, 31)^2 == 2; \\ Michel Marcus, Nov 22 2022

Formula

a(n) = a(n-1)+a(n-2)-a(n-3).
a(n) = (31+(-1)^(n-1)+62(n-1))/4.
G.f.: x*(8+15*x+8*x^2)/((1+x)*(x-1)^2). - R. J. Mathar, Aug 26 2009
a(n) = 31*(n-1)-a(n-1) with n>1, a(1)=8. - Vincenzo Librandi, Nov 30 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = tan(15*Pi/62)*Pi/31. - Amiram Eldar, Feb 28 2023

Extensions

Entries checked by R. J. Mathar, Aug 26 2009

A375352 Numbers k such that 14*k + 2 is a square.

Original entry on oeis.org

1, 7, 23, 41, 73, 103, 151, 193, 257, 311, 391, 457, 553, 631, 743, 833, 961, 1063, 1207, 1321, 1481, 1607, 1783, 1921, 2113, 2263, 2471, 2633, 2857, 3031, 3271, 3457, 3713, 3911, 4183, 4393, 4681, 4903, 5207, 5441, 5761, 6007, 6343, 6601, 6953, 7223, 7591, 7873
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 12 2024

Keywords

Comments

a(11) = 391 is first composite number in this sequence.

Crossrefs

Numbers k such that (m + (16-m)*k) is a square: A204221 (m = 1), this sequence (m = 2), A001082 (m = 4), A181433 (m = 5), A273367 (m = 6), A266956 (m = 7), A056220 (m = 8), A274978 (m = 9), A028872 (m = 12), A161532 (m = 14).

Programs

  • Magma
    [k: k in [0..8000] | IsSquare(14*k + 2)];
  • Mathematica
    ((Table[14*n + {4, 10}, {n, 0, 23}] // Flatten)^2 - 2)/14 (* Amiram Eldar, Aug 13 2024 *)

Formula

a(n) = (A113804(n)^2 - 2)/14. - Amiram Eldar, Aug 13 2024
a(n) = 2*A212965(n-1) - 1. - Hugo Pfoertner, Aug 13 2024
E.g.f.: ((2 + x + 7*x^2)*cosh(x) + (1 - x + 7*x^2)*sinh(x) - 2)/2. - Stefano Spezia, Aug 13 2024
Showing 1-10 of 10 results.