A005115
Let i, i+d, i+2d, ..., i+(n-1)d be an n-term arithmetic progression of primes; choose the one which minimizes the last term; then a(n) = last term i+(n-1)d.
Original entry on oeis.org
2, 3, 7, 23, 29, 157, 907, 1669, 1879, 2089, 249037, 262897, 725663, 36850999, 173471351, 198793279, 4827507229, 17010526363, 83547839407, 572945039351, 6269243827111
Offset: 1
n, AP, last term
1 2 2
2 2+j 3
3 3+2j 7
4 5+6j 23
5 5+6j 29
6 7+30j 157
7 7+150j 907
8 199+210j 1669
9 199+210j 1879
10 199+210j 2089
11 110437+13860j 249037
12 110437+13860j 262897
..........................
a(11)=249037 since 110437,124297,...,235177,249037 is an arithmetic progression of 11 primes ending with 249037 and it is the least number with this property.
- R. K. Guy, Unsolved Problems in Number Theory, A5.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Jens Kruse Andersen, Primes in Arithmetic Progression Records [May have candidates for later terms in this sequence.]
- Thomas Bloom, Problem 200 and Problem 215, Erdős Problems.
- Harvey Dubner and Harry Nelson, Seven consecutive primes in arithmetic progression, Math. Comp., 66 (1997) 1743-1749. MR 98a:11122.
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), pp. 481-547. arXiv:math/0404188 [math.NT], 2004-2007.
- Ben Green and Terence Tao, A bound for progressions of length k in the primes
- Andrew Granville, Prime number patterns, American Mathematical Monthly 115 (2008), pp. 279-296.
- Paul A. Pritchard, Andrew Moran and Anthony Thyssen, Twenty-two primes in arithmetic progression, Math. Comp. 64 (1995), no. 211, 1337-1339.
- Terence Tao, Erdős problem database, see no. 200, 215.
- Index entries for sequences related to primes in arithmetic progressions
For the associated gaps, see
A093364. For the initial terms, see
A113827. For the arithmetic progressions, see
A133277.
-
(* This program will generate the 4 to 12 terms to use a[n_] to generate term 13 or higher, it will have a prolonged run time. *) a[n_] := Module[{i, p, found, j, df, k}, i = 1; While[i++; p = Prime[i]; found = 0; j = 0; While[j++; df = 6*j; (p > ((n - 1)*df)) && (found == 0), found = 1; Do[If[! PrimeQ[p - k*df], found = 0], {k, 1, n - 1}]]; found == 0]; p]; Table[a[i], {i, 4, 12}]
a(18)-a(21) from Granville's paper, Jan 26 2006
A088430
a(n) = the least positive d such that for p=prime(n), the numbers p+0d, p+1d, p+2d, ..., p+(p-1)d are all primes.
Original entry on oeis.org
1, 2, 6, 150, 1536160080, 9918821194590, 341976204789992332560, 2166703103992332274919550
Offset: 1
n AP Last term
--------------
1 2+i 3
2 3+2*i 7
3 5+6*i 29
4 7+150*i 907
5 11+1536160080*i 15361600811
6 13+9918821194590*i 119025854335093
7 17+341976204789992332560*i 5471619276639877320977
8 19+2166703103992332274919550*i 39000655871861980948551919
- Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 139-140.
- Jens Kruse Andersen, Smallest AP-k with minimal start
- Phil Carmody, a(7), NMBRTHRY Nov 2001
- Andrew Granville, Prime number patterns
- Ben Green and Terence Tao, The primes contain arbitrarily long arithmetic progressions, arXiv:math/0404188 [math.NT], 2004-2007. [Background]
- Paulo Ribenboim, Les records des nombres premiers, Séminaire de Philosophie et Mathématiques (8) (1987) 1-25.
- Paulo Ribenboim, Prime number records, Coll. Math. J. 25 (4) (1994) 280-290.
- Paulo Ribenboim, Euler's Famous prime generating polynomial and the class number of imaginary quadratic fields, (2000) p 91-111
- Russell E. Rierson, Question About Prime Numbers.
- Zak Seidov, Question About Prime Numbers.
- Zak Seidov and others, Russell E. Rierson's Question About Prime Numbers, digest of 5 messages in primenumbers Yahoo group, Sep 29 - Oct 1, 2003.
See
A113834 for last term in the progression, and
A231017 for the 2nd term.
-
A088430[n_] := Module[{p, m, d},
p = Prime[n]; m = Product[Prime[i], {i, 1, n - 1}];
d = m;
While[! AllTrue[Table[p + i*d, {i, 1, p - 1}], PrimeQ], d = d + m];
Return[d];
];
Table[A088430[n], {n, 1, 8}] (* Robert Price, Mar 27 2019 *)
a(7) was found by Phil Carmody. -
Don Reble, Nov 23 2003
A113832
Triangle read by rows: row n (n>=2) gives a set of n primes with the property that the pairwise averages are all primes, having the smallest largest element.
Original entry on oeis.org
3, 7, 3, 7, 19, 3, 11, 23, 71, 5, 29, 53, 89, 113, 3, 11, 83, 131, 251, 383, 5, 29, 113, 269, 353, 449, 509, 5, 17, 41, 101, 257, 521, 761, 881, 23, 431, 503, 683, 863, 1091, 1523, 1871, 2963, 31, 1123, 1471, 1723, 3463, 3571, 4651, 5563, 5743, 6991
Offset: 2
Triangle begins:
3, 7
3, 7, 19
3, 11, 23, 71
5, 29, 53, 89, 113
3, 11, 83, 131, 251, 383
5, 29, 113, 269, 353, 449, 509
The set of primes generated by {5, 29, 53, 89, 113} is {17, 29, 41, 47, 59, 59, 71, 71, 83, 101}.
- Antal Balog, The prime k-tuplets conjecture on average, in "Analytic Number Theory" (eds. B. C. Berndt et al.) Birkhäuser, Boston, 1990, pp. 165-204. [Background]
See
A115631 for the case when all pairwise averages are distinct primes.
A231017
Least prime q > p = prime(n) such that if d = q-p, then p, p+d, p+2d, ..., p+(p-1)d are all primes.
Original entry on oeis.org
3, 5, 11, 157, 1536160091, 9918821194603, 341976204789992332577, 2166703103992332274919569
Offset: 1
Prime(3) = 5 and 5, 11, 17, 23, 29 is the smallest 5-term AP beginning with 5, so a(3) = 11.
- P. Ribenboim, My Numbers, My Friends, Springer, 2000; p. 67.
- P. Ribenboim, The Book of Prime Number Records, 2nd ed., Springer, 1989; p. 225.
For other types of APs of primes see
A005115 and its comments.
-
a(n)=my(p=prime(n),P=prod(i=1,n-1,prime(i)),d); forprime(q=p+1,, d=q-p; if(d%P,next); for(i=2,p-1,if(!isprime(p+i*d), next(2))); return(q)) \\ Charles R Greathouse IV, Nov 08 2013
A231406
Table read by rows, with n-th row the smallest non-constant p-term arithmetic progression of primes beginning with p = prime(n).
Original entry on oeis.org
2, 3, 3, 5, 7, 5, 11, 17, 23, 29, 7, 157, 307, 457, 607, 757, 907, 11, 1536160091, 3072320171, 4608480251, 6144640331, 7680800411, 9216960491, 10753120571, 12289280651, 13825440731, 15361600811, 13, 9918821194603, 19837642389193, 29756463583783, 39675284778373, 49594105972963, 59512927167553, 69431748362143, 79350569556733, 89269390751323, 99188211945913, 109107033140503, 119025854335093, 17, 341976204789992332577
Offset: 1
Triangle begins:
2 3
3 5 7
5 11 17 23 29
7 157 307 457 607 757 907
11 1536160091 3072320171 4608480251 6144640331 7680800411 9216960491 10753120571 12289280651 13825440731 15361600811
A113833
Triangle read by rows: row n (n>=2) gives a set of n primes such that the averages of all subsets are distinct primes, having the smallest largest element.
Original entry on oeis.org
3, 7, 7, 19, 67, 5, 17, 89, 1277, 209173, 322573, 536773, 1217893, 2484733
Offset: 2
Triangle begins:
3, 7
7, 19, 67
5, 17, 89, 1277
- Antal Balog, The prime k-tuplets conjecture on average, in "Analytic Number Theory" (eds. B. C. Berndt et al.) Birkhäuser, Boston, 1990, pp. 165-204. [Background]
A158256
Values of d in AP 11+210*d*i, i=0..10, with 11 primes.
Original entry on oeis.org
7315048, 23389398, 368453046, 397698469, 476527246, 716025940, 1428738103, 1517391167, 1761057635, 1796879220, 2436613965, 2762038441, 3041254151, 3340639523, 3551566265, 3698215410, 4207031185, 4407805122, 4556491589, 5072158298, 5626167378, 5986324571, 7430871116, 8023346435, 8172201108, 8457933834, 10733118467
Offset: 1
Showing 1-7 of 7 results.
Comments