cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A152771 a(n) = sigma(n) - 2*d(n) + 1.

Original entry on oeis.org

0, 0, 1, 2, 3, 5, 5, 8, 8, 11, 9, 17, 11, 17, 17, 22, 15, 28, 17, 31, 25, 29, 21, 45, 26, 35, 33, 45, 27, 57, 29, 52, 41, 47, 41, 74, 35, 53, 49, 75, 39, 81, 41, 73, 67, 65, 45, 105, 52, 82, 65, 87, 51, 105, 65, 105, 73, 83, 57, 145
Offset: 1

Views

Author

Omar E. Pol, Dec 14 2008

Keywords

Crossrefs

Programs

  • Mathematica
    Table[DivisorSigma[1, n] - 2 DivisorSigma[0, n] + 1, {n, 60}] (* Ivan Neretin, Sep 30 2017 *)
  • PARI
    a(n) = sigma(n) - 2*numdiv(n) + 1; \\ Michel Marcus, Sep 30 2017

Formula

a(n) = A000203(n) - 2*A000005(n) + 1 = A000203(n) - A114003(n) = A088580(n) - A062011(n). - Omar E. Pol, Sep 30 2017
G.f.: Sum_{k>=1} x^(3*k) / (1 - x^k)^2. - Ilya Gutkovskiy, Apr 24 2021

A114002 Expansion of g.f. x^k(1+x^(k+1))/(1-x^(k+1)).

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 2, 2, 0, 1, 2, 0, 0, 0, 1, 2, 2, 2, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 2, 2, 0, 2, 0, 0, 0, 1, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 2, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 0, 2, 0, 0, 0, 0, 0, 1, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 12 2005

Keywords

Comments

Inverse is A114004. Row sums are A114003.

Examples

			Triangle begins:
  1;
  2, 1;
  2, 0, 1;
  2, 2, 0, 1;
  2, 0, 0, 0, 1;
  2, 2, 2, 0, 0, 1;
  2, 0, 0, 0, 0, 0, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    T[n_,k_]:=SeriesCoefficient[x^k(1+x^(k+1))/(1-x^(k+1)),{x,0,n}]; Table[T[n,k],{n,0,13},{k,0,n}] //Flatten (* Stefano Spezia, Sep 08 2023 *)

Formula

Column k has g.f. x^k(1+x^(k+1))/(1-x^(k+1)).
Equals 2*A051731 - I, I = Identity matrix. - Gary W. Adamson, Nov 07 2007

A360999 Number of tilings of an n X 2 rectangle by integer-sided rectangular pieces that cannot be rearranged to produce a different tiling of the rectangle (including rotations and reflections of the original tiling).

Original entry on oeis.org

2, 2, 3, 4, 3, 6, 3, 6, 5, 6, 3, 10, 3, 6, 7, 8, 3, 10, 3, 10, 7, 6, 3, 14, 5, 6, 7, 10, 3, 14, 3, 10, 7, 6, 7, 16, 3, 6, 7, 14, 3, 14, 3, 10, 11, 6, 3, 18, 5, 10, 7, 10, 3, 14, 7, 14, 7, 6, 3, 22, 3, 6, 11, 12, 7, 14, 3, 10, 7, 14, 3, 22, 3, 6, 11, 10, 7, 14
Offset: 1

Views

Author

Pontus von Brömssen, Feb 28 2023

Keywords

Crossrefs

Second column of A360998.
Essentially the same as A086369.

Formula

a(n) = 2*A000005(n) - 1 - [n even] = A114003(n) + A000035(n) - 1 for n >= 2.

A128184 A051731 * A097806.

Original entry on oeis.org

1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 0, 1, 1, 2, 2, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 1, 1, 2, 1, 0, 1, 1, 0, 0, 0, 1, 1
Offset: 1

Views

Author

Gary W. Adamson, Feb 17 2007

Keywords

Comments

Row sums = A114003: (1, 3, 3, 5, 3, 7, 3, 7, 5, 7, ...).

Examples

			First few rows of the triangle:
  1;
  2, 1;
  1, 1, 1;
  2, 1, 1, 1;
  1, 0, 0, 1, 1;
  2, 2, 1, 0, 1, 1;
  ...
		

Crossrefs

Formula

A051731 * A097806, (inverse Moebius transform of A097806).

A144515 Triangle read by rows: A051731 * A103451.

Original entry on oeis.org

1, 2, 1, 2, 0, 1, 3, 1, 0, 1, 2, 0, 0, 0, 1, 4, 1, 1, 0, 0, 1, 2, 0, 0, 0, 0, 0, 1, 4, 1, 0, 1, 0, 0, 0, 1, 3, 0, 1, 0, 0, 0, 0, 0, 1, 4, 1, 0, 0, 1, 0, 0, 0, 0, 1
Offset: 0

Views

Author

Gary W. Adamson, Nov 21 2007

Keywords

Comments

Row sums = A114003: (1, 3, 3, 5, 3, 7, 3, 7, 5, 7,...).
Left border = d(n), A000005: (1, 2, 2, 3, 2, 4, 2, 4,...).

Examples

			First few rows of the triangle are:
1;
2, 1;
2, 0, 1;
3, 1, 0, 1;
2, 0, 0, 0, 1;
4, 1, 1, 0, 0, 1;
2, 0, 0, 0, 0, 0, 1;
...
		

Crossrefs

Formula

A051731 * A103451 as infinite lower triangular matrices. Left border of A051731 (all 1's) is replaced with A000005: (1, 2, 2, 3, 2, 4,...).

A235671 Triangle read by rows in which row n lists the proper divisors of n in increasing order, 2n, and the proper divisors of n in decreasing order.

Original entry on oeis.org

2, 1, 4, 1, 1, 6, 1, 1, 2, 8, 2, 1, 1, 10, 1, 1, 2, 3, 12, 3, 2, 1, 1, 14, 1, 1, 2, 4, 16, 4, 2, 1, 1, 3, 18, 3, 1, 1, 2, 5, 20, 5, 2, 1, 1, 22, 1, 1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1, 1, 26, 1, 1, 2, 7, 28, 7, 2, 1, 1, 3, 5, 30, 5, 3, 1, 1, 2, 4, 8, 32, 8, 4, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 24 2014

Keywords

Comments

Numerators of a sequence related to the symmetric structure of sigma, which arises from the structure of A237593. The structure in the first two octants is transformed in a structure in the 6th and 7th octants, which is similar to an isosceles triangle.
Denominators are in A007395.
Row sums give A074400.
Row lengths is A114003 (see the Jovovic's formula in A114003).

Examples

			The irregular triangle begins:
2;
1, 4, 1;
1, 6, 1;
1, 2, 8, 2, 1;
1, 10, 1;
1, 2, 3, 12, 3, 2, 1;
1, 14, 1;
1, 2, 4, 16, 4, 2, 1;
1, 3, 18, 3, 1;
1, 2, 5, 20, 5, 2, 1;
1, 22, 1;
1, 2, 3, 4, 6, 24, 6, 4, 3, 2, 1;
...
Also:
1;
1/2, 2, 1/2;
1/2, 3, 1/2;
1/2, 1, 4, 1, 1/2;
1/2, 5, 1/2;
1/2, 1, 3/2, 6, 3/2, 1, 1/2;
1/2, 7, 1/2;
1/2, 1, 2, 8, 2, 1, 1/2;
1/2, 3/2, 9, 3/2, 1/2;
1/2, 1, 5/2, 10, 5/2, 1, 1/2;
1/2, 11, 1/2;
1/2, 1, 3/2, 2, 3, 12, 3, 2, 3/2, 1, 1/2;
...
		

Crossrefs

Programs

  • Mathematica
    pd[n_]:=Module[{d=Most[Divisors[n]]},Flatten[Join[{d,{2n},Reverse[d]}]]]; Flatten[Array[pd,20]] (* Harvey P. Dale, Dec 22 2014 *)

A365540 Antidiagonal sums of A365539.

Original entry on oeis.org

0, 1, 5, 12, 24, 39, 61, 86, 118, 155, 199, 246, 304, 365, 433, 508, 592, 679, 777, 878, 990, 1109, 1235, 1364, 1508, 1657, 1813, 1976, 2150, 2327, 2519, 2714, 2920, 3133, 3353, 3580, 3824, 4071, 4325, 4586, 4862, 5141, 5435, 5732, 6040, 6359, 6685, 7014, 7362
Offset: 0

Views

Author

Stefano Spezia, Sep 08 2023

Keywords

Crossrefs

Cf. A000005, A114003 (2nd differences), A365539.

Programs

  • Mathematica
    A365539[n_,k_]:=SeriesCoefficient[(1+x^k)/((1-x)^2*(1-x^k)),{x,0,n}]; Table[Sum[A365539[n-k,k], {k,n}], {n,0,48}] (* or *)
    Table[Sum[Sum[2  DivisorSigma[0,k]-1,{k,m}],{m,n}],{n,0,48}]

Formula

a(n) = Sum_{m=1..n} (Sum_{k=1..m} (2*A000005(k) - 1)).
Showing 1-7 of 7 results.