cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A114076 Numbers k such that k * phi(k) is a cube.

Original entry on oeis.org

1, 4, 32, 50, 72, 225, 256, 400, 576, 900, 1944, 2048, 2166, 2312, 2646, 3200, 4107, 4563, 4608, 5202, 6075, 6250, 7200, 7225, 15125, 15552, 16384, 16428, 17328, 18252, 18496, 21168, 23762, 24300, 25600, 28125, 28900, 35378, 36864, 41616, 50000, 52488, 57600
Offset: 1

Views

Author

Giovanni Resta, Feb 13 2006

Keywords

Comments

From Robert Israel, Sep 06 2020: (Start)
If n > 1 is in the sequence, A071178(n) == 2 (mod 3).
If p=2^(2^k)+1 is in A019434, includes 2^a*p^b where a == 2^k-1 (mod 3) and b == 2 (mod 3).
If members m and n are coprime, then m*n is in the sequence.
If n is in the sequence and prime p divides n, then p^3*n is in the sequence. (End)
To look for terms it suffices to see if cubes have a divisors pair (k, m) such that phi(m) = k. - David A. Corneth, May 21 2024

Examples

			phi(1944) * 1944 = 1259712 = 108^3.
		

Crossrefs

Aside from the first term, a subsequence of A070003. A013731 is a subsequence.

Programs

  • Maple
    filter:= proc(n) local F;
      F:= ifactors(n*numtheory:-phi(n))[2];
      type(map(t -> t[2]/3, F), list(integer));
    end proc:
    select(filter, [$1..10^5]); # Robert Israel, Sep 06 2020
  • Mathematica
    Select[Range[57600],IntegerQ[(# EulerPhi[#])^(1/3)]&] (* Stefano Spezia, May 29 2024 *)
  • PARI
    isok(n) = ispower(n*eulerphi(n), 3); \\ Michel Marcus, Jan 22 2014
    
  • PARI
    upto(n)= res = List(); forfactored(i = 1, n, if(ispower(i[1] * eulerphi(i[2]), 3), listput(res, i[1]); ) ); res  \\ David A. Corneth, Dec 08 2022
    
  • PARI
    \\ See Corneth link
    
  • Python
    from sympy import integer_nthroot, totient as phi
    def ok(k): return integer_nthroot(k * phi(k), 3)[1]
    print([k for k in range(1, 60000) if ok(k)]) # Michael S. Branicky, Dec 08 2022

Extensions

More terms from Michel Marcus, Jan 22 2014