A114076 Numbers k such that k * phi(k) is a cube.
1, 4, 32, 50, 72, 225, 256, 400, 576, 900, 1944, 2048, 2166, 2312, 2646, 3200, 4107, 4563, 4608, 5202, 6075, 6250, 7200, 7225, 15125, 15552, 16384, 16428, 17328, 18252, 18496, 21168, 23762, 24300, 25600, 28125, 28900, 35378, 36864, 41616, 50000, 52488, 57600
Offset: 1
Keywords
Examples
phi(1944) * 1944 = 1259712 = 108^3.
Links
- David A. Corneth, Table of n, a(n) for n = 1..8565 (first 300 terms from Robert Israel, terms <= 5*10^11)
- David A. Corneth, PARI program
Crossrefs
Programs
-
Maple
filter:= proc(n) local F; F:= ifactors(n*numtheory:-phi(n))[2]; type(map(t -> t[2]/3, F), list(integer)); end proc: select(filter, [$1..10^5]); # Robert Israel, Sep 06 2020
-
Mathematica
Select[Range[57600],IntegerQ[(# EulerPhi[#])^(1/3)]&] (* Stefano Spezia, May 29 2024 *)
-
PARI
isok(n) = ispower(n*eulerphi(n), 3); \\ Michel Marcus, Jan 22 2014
-
PARI
upto(n)= res = List(); forfactored(i = 1, n, if(ispower(i[1] * eulerphi(i[2]), 3), listput(res, i[1]); ) ); res \\ David A. Corneth, Dec 08 2022
-
PARI
\\ See Corneth link
-
Python
from sympy import integer_nthroot, totient as phi def ok(k): return integer_nthroot(k * phi(k), 3)[1] print([k for k in range(1, 60000) if ok(k)]) # Michael S. Branicky, Dec 08 2022
Extensions
More terms from Michel Marcus, Jan 22 2014
Comments