cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A086793 Number of iterations of the map A034690 (x -> sum of digits of all divisors of x) required to reach one of the fixed points, 15 or 1.

Original entry on oeis.org

0, 5, 4, 3, 9, 8, 2, 1, 11, 12, 5, 7, 10, 1, 0, 13, 12, 15, 6, 1, 2, 12, 9, 9, 11, 1, 13, 9, 8, 14, 10, 14, 8, 16, 3, 17, 6, 10, 2, 14, 9, 9, 2, 3, 9, 16, 8, 3, 3, 3, 16, 2, 12, 4, 16, 4, 2, 14, 1, 10, 2, 1, 15, 7, 3, 18, 2, 18, 10, 18, 12, 11, 6, 10, 17, 10, 10, 17, 13, 10, 11, 16, 8, 2, 14, 10, 15
Offset: 1

Views

Author

Jason Earls, Aug 04 2003; revised Jun 03 2004

Keywords

Comments

Ecker states that every number (larger than 1) eventually reaches 15. "Take any natural number larger than 1 and write down its divisors, including 1 and the number itself. Now take the sum of the digits of these divisors. Iterate until a number repeats. The black-hole number this time is 15." [Ecker]
The only other fixed point of A034690, namely 1, cannot be reached by any other starting value than 1 itself. - M. F. Hasler, Nov 08 2015

Examples

			35 requires 3 iterations to reach 15 because 35 -> 1+5+7+3+5 = 21 -> 1+3+7+2+1 = 14 -> 1+2+7+1+4 = 15.
		

References

  • Michael W. Ecker, Number play, calculators and card tricks ..., pp. 41-51 of The Mathemagician and the Pied Puzzler, Peters, Boston. [Suggested by a problem in this article.]

Crossrefs

Cf. A034690, A114527. For records see A095347, A118358.

Programs

  • Haskell
    a086793 = f 0 where
       f y x = if x == 15 then y else f (y + 1) (a034690 x)
    -- Reinhard Zumkeller, May 20 2015
    
  • Maple
    with(numtheory); read transforms; f:=proc(n) local t1,t2,i; t1:=divisors(n); t2:=0; for i from 1 to nops(t1) do t2:=t2+digsum(t1[i]); od: t2; end;
    g:=proc(n) global f; local t2,i; t2:=n; for i from 1 to 100 do if t2 = 15 then return(i-1); fi; t2:=f(t2); od; end; # N. J. A. Sloane
  • Mathematica
    f[n_] := (i++; Plus @@ Flatten@IntegerDigits@Divisors@n); Table[i = 0; NestWhile[f, n, # != 15 &]; i, {n, 2, 87}] (* Robert G. Wilson v, May 16 2006 *)
  • PARI
    A086793(n)=n>1&&for(k=0, oo, n==15&&return(k); n=A034690(n)) \\ M. F. Hasler, Nov 08 2015

Extensions

Corrected by N. J. A. Sloane, May 17 2006 (a(15) changed to 0)
Corrected by David Applegate, Jan 23 2007 (reference book title corrected)
Extended to a(1)=0 by M. F. Hasler, Nov 08 2015.

A106756 Primes with digit sum = 14.

Original entry on oeis.org

59, 149, 167, 239, 257, 293, 347, 383, 419, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1193, 1229, 1283, 1319, 1373, 1409, 1427, 1481, 1553, 1571, 1607, 1733, 1823, 1913, 1931, 2039, 2129, 2237, 2273, 2309, 2381, 2417, 2543, 2633, 2741, 2903, 3083
Offset: 1

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Or prime numbers in A114527. - Zak Seidov, May 21 2006

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A235225 (digit sum = 14).
Cf. A062339 (same for digit sum s = 4), A106755 (s = 13), A106757 (s = 16), and others listed in A244918 (s = 68).

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | &+Intseq(p) eq 14]; // Vincenzo Librandi, Jul 08 2014
    
  • Mathematica
    Select[Prime[Range[10000]], Total[IntegerDigits[#]]==14 &] (* Vincenzo Librandi, Jul 08 2014 *)
  • PARI
    select( {is_A106756(n)= sumdigits(n)==14 && isprime(n)}, primes([1, 3333])) \\ M. F. Hasler, Mar 09 2022

Formula

Intersection of A000040 (primes) and A235225 (digit sum = 14); also equals { p in A000040 | A007953(p) = 14 }. - M. F. Hasler, Mar 09 2022

A119396 Numbers n such that A086793(n)=20.

Original entry on oeis.org

924, 1104, 1134, 1540, 1650, 1760, 1820, 1908, 1992, 2016, 2288, 2556, 2632, 2744, 2860, 2940, 2970, 3000, 3192, 3204, 3220, 3248, 3400, 3630, 3738, 3784, 3840, 3852, 3880, 3968, 3990, 4134, 4260, 4410, 4464, 4674, 4736, 4860, 4875, 4930, 4992, 5016
Offset: 1

Views

Author

Zak Seidov, May 17 2006

Keywords

Comments

Some trajectories are: 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15 1104,168,102,... 1540,162,66,36,... 1650,162,66,36,... 2016,297,66,36,... 2940,297,66,36,... 3192,312,102,36,... All trajectories eventually join one of previous trajectories.

Examples

			924 is a term because it reaches 15 in 20 steps with this trajectory 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local t;
      if kernelopts(level) > 460 then return FAIL fi;
      t:= add(convert(convert(d,base,10),`+`),d=numtheory:-divisors(n));
      1+procname(t)
    end proc:
    f(15):= 0:
    f(1):= FAIL:
    Res:= NULL: count:= 0:
    for n from 1 while count < 100 do
      if f(n) = 20 then
        count:= count+1;
        Res:= Res, n;
       fi
    od:
    Res; # Robert Israel, Apr 03 2018

Extensions

Edited by Robert Israel, Apr 03 2018
Showing 1-3 of 3 results.