cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A095347 n sets a new record for number of iterations of A034690 (sum of digits of the divisors of n) needed to reach 15 (see A086793).

Original entry on oeis.org

2, 5, 9, 10, 16, 18, 34, 36, 66, 162, 924, 71820, 127005777360
Offset: 1

Views

Author

Jason Earls, Jun 03 2004

Keywords

Comments

323203999999676796 takes 22 iterations to reach 15, but it probably is not the next term.
One could prefix a(0)=1 and change the definition to "... reach a fixed point, 1 or 15." - M. F. Hasler, Nov 08 2015

Crossrefs

Programs

Extensions

Offset corrected and a(13) from Donovan Johnson, Oct 28 2010

A114527 Numbers k such that A086793(k) is 1.

Original entry on oeis.org

8, 14, 20, 26, 59, 62, 122, 123, 143, 149, 167, 206, 239, 257, 293, 302, 341, 347, 383, 419, 422, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1133, 1193, 1202, 1203, 1229, 1283, 1313, 1319, 1331, 1373, 1409, 1427, 1481, 1553, 1571, 1607
Offset: 1

Views

Author

Zak Seidov, May 16 2006

Keywords

Comments

Prime numbers in the sequence are also primes with digit sum = 14 (A106756). - Zak Seidov, May 21 2006

Crossrefs

Programs

  • Mathematica
    ss={8,14};Do[If[15==Total@Flatten[IntegerDigits/@Divisors[n]],AppendTo[ss,n]],{n,20,2000}];ss (* Zak Seidov, May 21 2006 *)

A119396 Numbers n such that A086793(n)=20.

Original entry on oeis.org

924, 1104, 1134, 1540, 1650, 1760, 1820, 1908, 1992, 2016, 2288, 2556, 2632, 2744, 2860, 2940, 2970, 3000, 3192, 3204, 3220, 3248, 3400, 3630, 3738, 3784, 3840, 3852, 3880, 3968, 3990, 4134, 4260, 4410, 4464, 4674, 4736, 4860, 4875, 4930, 4992, 5016
Offset: 1

Views

Author

Zak Seidov, May 17 2006

Keywords

Comments

Some trajectories are: 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15 1104,168,102,... 1540,162,66,36,... 1650,162,66,36,... 2016,297,66,36,... 2940,297,66,36,... 3192,312,102,36,... All trajectories eventually join one of previous trajectories.

Examples

			924 is a term because it reaches 15 in 20 steps with this trajectory 924,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local t;
      if kernelopts(level) > 460 then return FAIL fi;
      t:= add(convert(convert(d,base,10),`+`),d=numtheory:-divisors(n));
      1+procname(t)
    end proc:
    f(15):= 0:
    f(1):= FAIL:
    Res:= NULL: count:= 0:
    for n from 1 while count < 100 do
      if f(n) = 20 then
        count:= count+1;
        Res:= Res, n;
       fi
    od:
    Res; # Robert Israel, Apr 03 2018

Extensions

Edited by Robert Israel, Apr 03 2018

A119398 Odd numbers taking exactly 21 steps to reach 15 in A086793.

Original entry on oeis.org

628425, 824175, 1340325, 1422135, 1495725, 1729665, 1845585, 1853775, 1916145, 2001825, 2015685, 2040675, 2045505, 2091375, 2165625, 2220435, 2226609, 2264535, 2333925, 2360085, 2365965, 2379465, 2465925, 2474955, 2499255, 2511495
Offset: 1

Views

Author

Zak Seidov, May 18 2006

Keywords

Comments

Most terms are multiples of 5. In the first 130 terms, there only 19 non-multiples of 5: 2226609, 2556477, 3252249, 3496779, 3638439, 4060287, 4779621, 4821453, 5146713, 5313231, 5365899, 5504499, 5578419, 5738733, 5785857, 5845749, 6189183, 6222447, 6236769.

Crossrefs

Programs

  • Maple
    f:= proc(n) option remember; local t;
      if kernelopts(level) > 460 then return FAIL fi;
      t:= add(convert(convert(d,base,10),`+`),d=numtheory:-divisors(n));
      1+procname(t)
    end proc:
    f(15):= 0:
    f(1):= FAIL:
    Res:= NULL: count:= 0:
    for n from 1 by 2 while count < 100 do
      if f(n) = 21 then Res:= Res, n; count:= count+1 fi;
    od:
    Res; # Robert Israel, Apr 03 2018

Extensions

a(1)=628425 inserted by Robert Israel, Apr 03 2018

A118358 Records in A086793.

Original entry on oeis.org

5, 9, 11, 12, 13, 15, 16, 17, 18, 19, 20, 21, 22
Offset: 1

Views

Author

N. J. A. Sloane, May 15 2006

Keywords

Crossrefs

Cf. A086793. A095347 is where these records happen.

Extensions

a(13) from Donovan Johnson, Dec 23 2010

A119397 Numbers taking exactly 21 steps to reach 15 in A086793.

Original entry on oeis.org

71820, 103950, 127764, 135660, 141360, 161460, 173250, 183744, 193284, 203580, 206712, 209440, 214830, 217620, 221760, 223020, 223860, 234432, 243540, 244440, 246330, 247752, 256680, 263160, 264180, 265200, 280368, 281160, 286380, 287712
Offset: 1

Views

Author

Zak Seidov, May 18 2006

Keywords

Comments

Some trajectories are: 71820,1104,168,102,36,46,18,30,27,22,9,13,5,6,12,19,11,3,4,7,8,15 103950,1134,168,... 127764,924,168,... 135660,1134,168,... 221760,1908,162,66,36,... 343728,1650,162,... 376992,2016,297,66,36,... All trajectories eventually join one of previous trajectories. In the first 136 terms <800000 there is only one odd number, 628425. Next odd terms are: 824175, 1340325, 1422135, 1495725 (see A119398).

Crossrefs

A260059 Infinite square array whose n-th row lists the numbers k for which A086793(k)=n, where A086793 = number of iteration of A034690 (sum of digits of divisors) to reach a fixed point, read by antidiagonals.

Original entry on oeis.org

8, 14, 7, 20, 21, 4, 26, 39, 35, 3, 59, 43, 44, 54, 2, 62, 52, 48, 56, 11, 19, 122, 57, 49, 128, 101, 37, 12, 123, 61, 50, 171, 136, 73, 64, 6, 143, 67, 65, 182, 138, 109, 108, 29, 5, 149, 84, 99, 188, 160, 127, 301, 33, 23, 13, 167, 93, 104, 216, 184, 163, 553, 47, 24, 31, 9, 206, 112, 105, 248, 190, 181, 589, 83, 28, 38, 25, 10, 239
Offset: 1

Views

Author

M. F. Hasler, Nov 08 2015

Keywords

Comments

The fixed points of A034690 are 1 and 15, these are the only numbers not appearing in this table. All other positive integers appear exactly once.
Is there a simple explanation why row 7 seems to grow significantly faster than the neighboring rows?
From row 21 on, the terms become very large: cf. A094501 which is the first column with 15 prefixed.

Examples

			The rows read
[ 8, 14,  20,  26,  59,  62, 122, 123, 143, 149, 167, 206, 239, 257, 293, 302,...],
[ 7, 21,  39,  43,  52,  57,  61,  67,  84,  93, 112, 124, 139, 151, 157, 189,...],
[ 4, 35,  44,  48,  49,  50,  65,  99, 104, 105, 116, 121, 125, 132, 140, 141,...],
[ 3, 54,  56, 128, 171, 182, 188, 216, 248, 252, 261, 264, 268, 270, 333, 387,...],
[ 2, 11, 101, 136, 138, 160, 184, 190, 208, 232, 238, 255, 282, 290, 318, 328,...],
[19, 37,  73, 109, 127, 163, 181, 271, 307, 396, 433, 523, 541, 613, 631, ...],
[12, 64, 108, 301, 553, 589, 949,1089,1197,1273,1687,1876,1957,2116, ...],
[ 6, 29,  33,  47,  83, 137, 173, 191, 227, 263, 281, 303, 317, ...],
[ 5, 23,  24,  28,  41,  42,  45,  92, 113, 131, 158, 164, ...],
[13, 31,  38,  60,  69,  74,  76,  77,  80,  86, 88, ...],
[ 9, 25,  72,  81, 117, 126, 156, 172, 258, 300, ...],
[10, 17,  22,  53,  71,  96, 107, 133, 202, ...], etc.
The first column is A094501.
		

Crossrefs

Programs

  • PARI
    (f(k,N=20,a=[],n=0)=while(#aA086793(n++)==k&&a=concat(a,n));a); T=vector(20,n,f(n,21-n)); for(n=1,20,for(k=1,n,print1(T[k][n-k+1]",")))

A034690 Sum of digits of all the divisors of n.

Original entry on oeis.org

1, 3, 4, 7, 6, 12, 8, 15, 13, 9, 3, 19, 5, 15, 15, 22, 9, 30, 11, 15, 14, 9, 6, 33, 13, 15, 22, 29, 12, 27, 5, 27, 12, 18, 21, 46, 11, 24, 20, 27, 6, 33, 8, 21, 33, 18, 12, 52, 21, 21, 18, 26, 9, 48, 18, 48, 26, 27, 15, 42, 8, 15, 32, 37, 21, 36, 14, 36, 24, 36, 9, 69, 11, 24, 34
Offset: 1

Views

Author

Keywords

Comments

For first occurrence of k, or 0 if k never appears, see A191000.
The only fixed points are 1 and 15. These are also the only loops of iterations of A034690: see the SeqFan thread "List the divisors...". - M. F. Hasler, Nov 08 2015
The following sequence is composed of numbers n such that the sum of digits of all divisors of n equals 15: 8, 14, 15, 20, 26, 59, 62, ... It actually depicts the positions of number 15 in this sequence: see the SeqFan thread "List the divisors...". - V.J. Pohjola, Nov 09 2015

Examples

			a(15) = 1 + 3 + 5 + (1+5) = 15. - _M. F. Hasler_, Nov 08 2015
		

Crossrefs

Cf. A093653 (binary equivalent)

Programs

  • Haskell
    a034690 = sum . map a007953 . a027750_row
    -- Reinhard Zumkeller, Jan 20 2014
    
  • Maple
    with(numtheory); read transforms; f:=proc(n) local t1, t2, i; t1:=divisors(n); t2:=0; for i from 1 to nops(t1) do t2:=t2+digsum(t1[i]); od: t2; end;
    # Alternative:
    sd:= proc(n) option remember; local k; k:= n mod 10; k + procname((n-k)/10) end proc:
    for n from 0 to 9 do sd(n):= n od:
    a:= n -> add(sd(d), d=numtheory:-divisors(n)):
    map(a, [$1..100]); # Robert Israel, Nov 17 2015
  • Mathematica
    Table[Plus @@ Flatten@ IntegerDigits@ Divisors@n, {n, 75}] (* Robert G. Wilson v, Sep 30 2006 *)
  • PARI
    vector(100, n, sumdiv(n, d, sumdigits(d))) \\ Michel Marcus, Jun 28 2015
    
  • PARI
    A034690(n)=sumdiv(n,d,sumdigits(d)) \\ For use in other sequences. - M. F. Hasler, Nov 08 2015
    
  • Python
    from sympy import divisors
    def sd(n): return sum(map(int, str(n)))
    def a(n): return sum(sd(d) for d in divisors(n))
    print([a(n) for n in range(1, 76)]) # Michael S. Branicky, Oct 06 2021

A106756 Primes with digit sum = 14.

Original entry on oeis.org

59, 149, 167, 239, 257, 293, 347, 383, 419, 491, 509, 563, 617, 653, 743, 761, 941, 1049, 1193, 1229, 1283, 1319, 1373, 1409, 1427, 1481, 1553, 1571, 1607, 1733, 1823, 1913, 1931, 2039, 2129, 2237, 2273, 2309, 2381, 2417, 2543, 2633, 2741, 2903, 3083
Offset: 1

Views

Author

Zak Seidov, May 16 2005

Keywords

Comments

Or prime numbers in A114527. - Zak Seidov, May 21 2006

Crossrefs

Cf. A000040 (primes), A007953 (sum of digits), A235225 (digit sum = 14).
Cf. A062339 (same for digit sum s = 4), A106755 (s = 13), A106757 (s = 16), and others listed in A244918 (s = 68).

Programs

  • Magma
    [p: p in PrimesUpTo(4000) | &+Intseq(p) eq 14]; // Vincenzo Librandi, Jul 08 2014
    
  • Mathematica
    Select[Prime[Range[10000]], Total[IntegerDigits[#]]==14 &] (* Vincenzo Librandi, Jul 08 2014 *)
  • PARI
    select( {is_A106756(n)= sumdigits(n)==14 && isprime(n)}, primes([1, 3333])) \\ M. F. Hasler, Mar 09 2022

Formula

Intersection of A000040 (primes) and A235225 (digit sum = 14); also equals { p in A000040 | A007953(p) = 14 }. - M. F. Hasler, Mar 09 2022

A094501 Smallest number that requires n iterations of the sum of digits of the divisors (A034690) to reach 15.

Original entry on oeis.org

15, 8, 7, 4, 3, 2, 19, 12, 6, 5, 13, 9, 10, 16, 30, 18, 34, 36, 66, 162, 924, 71820, 127005777360
Offset: 0

Views

Author

Jason Earls, Jun 05 2004

Keywords

Examples

			a(0)=15 trivially because 15 is reached in no steps (number of steps is 0);
a(1)=8 because divisors of 8 are 1,2,4,8 with sum of digits = 15 hence 15 is reached in 1 steps (number of steps is 1);
a(2)=7 because divisors of 7 are 1,7 with sum of digits =8 and we need another one step to reach 15 (number of steps is 2);
a(3)=4 because divisors of 4 are 1,2,4 with sum of digits =7 and we need another two steps to reach 15 (number of steps is 3);
a(20)=924 because starting with 924 we have the trajectory 924, 168, 102, 36, 46, 18, 30, 27, 22, 9, 13, 5, 6, 12, 19, 11, 3, 4, 7, 8, 15 reaching 15 in 20 steps.
a(21)=71820 because starting with 71820 we have the trajectory 71820, 1104, 168, 102, 36, 46, 18, 30, 27, 22, 9, 13, 5, 6, 12, 19, 11, 3, 4, 7, 8, 15 reaching 15 in 21 steps. - _Sean A. Irvine_, Oct 04 2009
		

Crossrefs

See A260060 for another variant.

Programs

  • Haskell
    import Data.List (elemIndex); import Data.Maybe (fromJust)
    a094501 = (+ 2) . fromJust . (`elemIndex` a086793_list)
    -- Reinhard Zumkeller, Nov 08 2015
    
  • Mathematica
    f[n_] := Block[{i = 0}, NestWhile[(i++; Plus @@ Flatten@ IntegerDigits@ Divisors@#) &, n, # != 15 &]; i]; t = Table[0, {100}]; Do[ a = f[n]; If[ t[[a]] < 101 && t[[a]] == 0, t[[a]] = n], {n, 2, 10^8}]; t (* Robert G. Wilson v, May 16 2006 *)
  • PARI
    A094501(n)=for(k=2, 9e9, A086793(k)==n&&return(k)) \\ M. F. Hasler, Nov 08 2015

Extensions

Examples provided by Zak Seidov, May 16 2006
Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, May 10 2007
a(22) found by exhaustive search by Sean A. Irvine, Oct 04 2009
a(22) corrected by Donovan Johnson and Sean A. Irvine
Showing 1-10 of 14 results. Next