Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 1, 0, 1, 1, 0, 0, 0, 4, 1, 1, 2, 0, 0, 2, 1, 0, 0, 0, 0, 0, 6, 1, 1, 0, 1, 0, 0, 0, 2, 1, 0, 2, 0, 0, 0, 0, 0, 4, 1, 1, 0, 0, 4, 0, 0, 0, 0, 4, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10, 1, 1, 2, 1, 0, 2, 0, 0, 0, 0, 0, 2
Offset: 1
First few rows of the triangle =
1;
1, 1;
1, 0, 2;
1, 1, 0, 1;
1, 0, 0, 0, 4;
1, 1, 2, 0, 0, 2;
1, 0, 0, 0, 0, 0, 6;
1, 1, 0, 1, 0, 0, 0, 2;
1, 0, 2, 0, 0, 0, 0, 0, 4;
1, 1, 0, 0, 4, 0, 0, 0, 0, 4;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 10;
1, 1, 2, 1, 0, 2, 0, 0, 0, 0, 0, 2;
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 12;
1, 1, 0, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, 6;
...
A055653
Sum of phi(d) [A000010] over all unitary divisors d of n (that is, gcd(d,n/d) = 1).
Original entry on oeis.org
1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 23, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 67, 51, 69, 70, 71, 35, 73
Offset: 1
n=1260 has 36 divisors of which 16 are unitary ones: {1,4,5,7,9,20,28,35,36,45,63,140,180,252,315,1260}.
EulerPhi values of these divisors are: {1,2,4,6,6,8,12,24,12,24,36,48,48,72,144,288}.
The sum is 735, thus a(1260)=735.
Or, 1260=2^2*3^2*5*7, thus a(1260) = (1 + 2^2 - 2)*(1 + 3^2 - 3)*(1 + 5 - 5^0)*(1 + 7 - 7^0) = 735.
- J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5. [From Laszlo Toth, Sep 04 2008]
- J. Morgado, A property of the Euler phi-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.
- Antti Karttunen, Table of n, a(n) for n = 1..65537 (first 1000 terms from T. D. Noe)
- Osama Alkam and Emad Abu Osba, On the regular elements in Zn, Turk J Math, 32 (2008), 31-39.
- B. Apostol and L. Petrescu, Extremal Orders of Certain Functions Associated with Regular Integers (mod n), Journal of Integer Sequences, 2013, # 13.7.5.
- Brăduţ Apostol and László Tóth, Some remarks on regular integers modulo n, arXiv:1304.2699 [math.NT], 2013.
- Klaus Dohmen, On the Number of Regular Elements in Zn, arXiv:2304.02471 [math.CO], 2023.
- S. R. Finch, Idempotents and nilpotents modulo n, arXiv:1304.2699 [math.NT], 2013.
- V. S. Joshi, Order-free integers (mod m), Number Theory (Mysore, 1981), Lect. Notes in Math. 938, Springer-Verlag, 1982, pp. 93-100.
- Vaclav Kotesovec, Plot of Sum_{k=1..n} a(k) / (Pi^2 * n^2 / 12) for n = 1..100000
- Sagar Mandal, Divisibility and Sequence Properties of sigma+ and phi+, arXiv:2508.11660 [math.GM], 2025.
- József Sándor and Krassimir Atanassov, Some new arithmetic functions, Notes on Number Theory and Discrete Mathematics, Volume 30, 2024, Number 4, Pages 851-856. See phi+ function.
- L. Tóth, Regular integers modulo n, arXiv:0710.1936 [math.NT], 2007-2008; Annales Univ. Sci. Budapest., Sect. Comp., 29 (2008), 263-275.
- L. Tóth, A gcd-sum function over regular integers modulo n, JIS 12 (2009) 09.2.5.
Cf.
A000010,
A053570,
A053571,
A000188,
A008833,
A055654,
A157361,
A114810,
A000010,
A077610,
A318661,
A318662.
-
a055653 = sum . map a000010 . a077610_row
-- Reinhard Zumkeller, Mar 11 2012
-
A055653 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]-ifactors(n)[ 2 ][ i ] [ 1 ]^(ifactors(n)[ 2 ] [ i ] [ 2 ]-1)): od: RETURN(ans) end:
-
a[n_] := Total[EulerPhi[Select[Divisors[n], GCD[#, n/#] == 1 &]]]; Array[a, 73] (* Jean-François Alcover, May 03 2011 *)
f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
-
a(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ Charles R Greathouse IV, Feb 19 2013, corrected by Antti Karttunen, Sep 03 2018
-
a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^f[i,2]-f[i,1]^(f[i,2]-1)+1) \\ Charles R Greathouse IV, Feb 19 2013
Showing 1-2 of 2 results.
Comments