cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A115335 a(0) = 3, a(1) = 5, a(2) = 1, and a(n) = (2^(1 + n) - 11*(-1)^n)/3 for n > 2.

Original entry on oeis.org

3, 5, 1, 9, 7, 25, 39, 89, 167, 345, 679, 1369, 2727, 5465, 10919, 21849, 43687, 87385, 174759, 349529, 699047, 1398105, 2796199, 5592409, 11184807, 22369625, 44739239, 89478489, 178956967, 357913945, 715827879, 1431655769, 2863311527, 5726623065, 11453246119
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2006

Keywords

Crossrefs

Cf. A115113, A115164, A163868 (bisection).

Programs

  • GAP
    a:=[3,5,1];;  for n in [4..35] do a[n]:=(2^n-11*(-1)^(n-1))/3; od; a; # Muniru A Asiru, Nov 23 2018
  • Magma
    I:=[9,7]; [3,5,1] cat [n le 2 select I[n] else Self(n-1) + 2*Self(n-2): n in [1..45]]; // G. C. Greubel, Nov 23 2018
    
  • Maple
    seq(coeff(series((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1)),x,n+1), x, n), n = 0 .. 35); # Muniru A Asiru, Nov 23 2018
  • Mathematica
    Join[{3,5,1},LinearRecurrence[{1,2},{9,7},40]] (* Harvey P. Dale, Jul 17 2014 *)
  • Maxima
    append([3, 5, 1], makelist((2^(1 + n) - 11*(-1)^n)/3, n, 3, 40)); /* Franck Maminirina Ramaharo, Nov 23 2018 */
    
  • PARI
    my(x='x+O('x^50)); Vec((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    s=((4*x^4+2*x^3+10*x^2-2*x-3)/((x+1)*(2*x-1))).series(x,50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 23 2018
    

Formula

a(n) = 2*abs((1/2)*(-1 + (-2)^n) - (2/3)*(2 + (-2)^n)*A057427(n)).
From Colin Barker, Jan 04 2013: (Start)
a(n) = a(n-1) + 2*a(n-2) for n > 4.
G.f.: (4*x^4 + 2*x^3 + 10*x^2 - 2*x - 3) / ((x + 1)*(2*x - 1)). (End)
E.g.f.: (18 + 3*x^2 - 11*exp(-x) + 2*exp(2*x))/3. - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

a(24) corrected, new name, and editing by Colin Barker and Joerg Arndt, Jan 04 2013

A115113 a(n) = 3*a(n-1) + 4*a(n-2), with a(0) = 2, a(1) = 6, a(2) = 10.

Original entry on oeis.org

2, 6, 10, 54, 202, 822, 3274, 13110, 52426, 209718, 838858, 3355446, 13421770, 53687094, 214748362, 858993462, 3435973834, 13743895350, 54975581386, 219902325558, 879609302218, 3518437208886, 14073748835530, 56294995342134, 225179981368522, 900719925474102
Offset: 0

Views

Author

Roger L. Bagula, Mar 06 2006

Keywords

Crossrefs

Programs

  • Magma
    I:=[6,10]; [2] cat [n le 2 select I[n] else 3*Self(n-1) + 4*Self(n-2): n in [1..49]]; // G. C. Greubel, Nov 23 2018
    
  • Mathematica
    Join[{2}, LinearRecurrence[{3, 4}, {6, 10}, 50]]
  • Maxima
    (a[0] : 2, a[1] : 6, a[2] : 10, a[n] := 3*a[n-1] + 4*a[n-2], makelist(a[n], n, 0, 50)); /* Franck Maminirina Ramaharo, Nov 23 2018 */
    
  • PARI
    x='x+O('x^50); Vec(2*(8*x^2-1)/((x+1)*(4*x-1))) \\ G. C. Greubel, Nov 23 2018
    
  • Sage
    s=(2*(8*x^2-1)/((x+1)*(4*x-1))).series(x,50); s.coefficients(x, sparse=False) # G. C. Greubel, Nov 23 2018

Formula

From Colin Barker, Nov 13 2012: (Start)
a(n) = (-2*(7*(-1)^n - 2^(1 + 2*n)))/5 for n > 0.
a(n) = 3*a(n-1) + 4*a(n-2) for n > 2.
G.f.: 2*(8*x^2 - 1)/((x + 1)*(4*x - 1)). (End)
E.g.f.: (20 - 14*exp(-x) + 4*exp(4*x))/5. - Franck Maminirina Ramaharo, Nov 23 2018

Extensions

Edited, and new name from Franck Maminirina Ramaharo, Nov 23 2018, after Colin Barker's formula
Showing 1-2 of 2 results.