cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A359762 Array read by ascending antidiagonals. T(n, k) = n!*[x^n] exp(x + (k/2) * x^2). A generalization of the number of involutions (or of 'telephone numbers').

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 4, 3, 1, 1, 1, 10, 7, 4, 1, 1, 1, 26, 25, 10, 5, 1, 1, 1, 76, 81, 46, 13, 6, 1, 1, 1, 232, 331, 166, 73, 16, 7, 1, 1, 1, 764, 1303, 856, 281, 106, 19, 8, 1, 1, 1, 2620, 5937, 3844, 1741, 426, 145, 22, 9, 1, 1
Offset: 0

Views

Author

Peter Luschny, Jan 14 2023

Keywords

Comments

The array is a generalization of the number of involutions of permutations on n letters, A000085, also known as 'telephone numbers'. According to Bednarz et al. the telephone number interpretation "is due to John Riordan, who noticed that T(n, 1) is the number of connection patterns in a telephone system with n subscribers."
In graph theory, the n-th telephone number is the total number of matchings of a complete graph K_n (see the Wikipedia entry). Assuming a network with k possibilities of connections leads to a network that can be modeled by a complete multigraph K(n, k). The total number of connection patterns in such a network is given by T(n, k).

Examples

			Array T(n, k) starts:
  [n\k] 0   1      2        3       4        5        6        7
  --------------------------------------------------------------
  [0] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [1] 1,    1,     1,       1,      1,       1,       1,       1, ... [A000012]
  [2] 1,    2,     3,       4,      5,       6,       7,       8, ... [A000027]
  [3] 1,    4,     7,      10,     13,      16,      19,      22, ... [A016777]
  [4] 1,   10,    25,      46,     73,     106,     145,     190, ... [A100536]
  [5] 1,   26,    81,     166,    281,     426,     601,     806, ...
  [6] 1,   76,   331,     856,   1741,    3076,    4951,    7456, ...
  [7] 1,  232,  1303,    3844,   8485,   15856,   26587,   41308, ...
  [8] 1,  764,  5937,   21820,  57233,  123516,  234529,  406652, ...
  [9] 1, 2620, 26785,  114076, 328753,  757756, 1510705, 2719900, ...
   [A000085][A047974][A115327][A115329][A115331]
		

References

  • John Riordan, Introduction to Combinatorial Analysis, Dover (2002).

Crossrefs

Programs

  • Maple
    T := (n, k) -> add(binomial(n, j)*doublefactorial(j-1)*k^(j/2), j = 0..n, 2):
    for n from 0 to 9 do lprint(seq(T(n, k), k = 0..7)) od;
    T := (n, k) -> ifelse(k=0, 1, I^(-n)*(2*k)^(n/2)*KummerU(-n/2, 1/2, -1/(2*k))):
    seq(seq(simplify(T(n-k, k)), k = 0..n), n = 0..10);
    T := proc(n, k) exp(x + (k/2)*x^2): series(%, x, 16): n!*coeff(%, x, n) end:
    seq(lprint(seq(simplify(T(n, k)), k = 0..8)), n = 0..9);
    T := proc(n, k) option remember; if n = 0 or n = 1 then 1 else T(n, k-1) +
    n*(k-1)*T(n, k-2) fi end: for n from 0 to 9 do seq(T(n, k), k=0..9) od;
    # Only to check the interpretation as a determinant of a lower Hessenberg matrix:
    gen := proc(i, j, n) local ev, tv; ev := irem(j+i, 2) = 0; tv := j < i and not ev;
    if j > i + 1 then 0 elif j = i + 1 then -1 elif j <= i and ev then 1
    elif tv and i < n then x*(n + 1 - i) - 1 else x fi end:
    det := M -> LinearAlgebra:-Determinant(M):
    p := (n, k) -> subs(x = k, det(Matrix(n, (i, j) -> gen(i, j, n)))):
    for n from 0 to 9 do seq(p(n, k), k = 0..7) od;
  • Mathematica
    T[n_, k_] := Sum[Binomial[n, j] Factorial2[j-1] * If[j==0, 1,  k^(j/2)], {j, 0, n, 2}];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 25 2023 *)
  • Python
    from math import factorial, comb
    def oddfactorial(n: int) -> int:
        return factorial(2 * n) // (2**n * factorial(n))
    def T(n: int, k: int) -> int:
        return sum(comb(n, 2 * j) * oddfactorial(j) * k**j for j in range(n + 1))
    for n in range(10): print([T(n, k) for k in range(8)])

Formula

T(n, k) = Sum_{j=0..n, j even} binomial(n, j) * (j - 1)!! * k^(j/2).
T(n, k) = T(n, k-1) + n*(k-1)*T(n, k-2) for n >= 2, T(n, 0) = T(n, 1) = 1.
T(n, k) = i^(-n) * (2*k)^(n/2) * KummerU(-n/2, 1/2, -1/(2*k)) for k >= 1, and T(n, 0) = 1.

A115331 E.g.f.: exp(x+5/2*x^2).

Original entry on oeis.org

1, 1, 6, 16, 106, 426, 3076, 15856, 123516, 757756, 6315976, 44203776, 391582456, 3043809016, 28496668656, 241563299776, 2378813448976, 21703877431056, 223903020594016, 2177251989389056, 23448038945820576, 241173237884726176
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2006

Keywords

Comments

Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.
a(n) is also the number of square roots of any permutation in S_{5n} whose disjoint cycle decomposition consists of n cycles of length 5. - Luis Manuel Rivera Martínez, Feb 26 2015

Crossrefs

Column k=5 of A359762.
Cf. A115332.

Programs

  • Mathematica
    Range[0, 20]! CoefficientList[Series[Exp[(x + 5 / 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
  • PARI
    a(n)=local(m=5);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)

Formula

Term-by-term square equals A115332 which has e.g.f.: exp(x/(1-5*x))/sqrt(1-25*x^2).
a(n) ~ exp(sqrt(n/5)-n/2-1/20)*5^(n/2)*n^(n/2)/sqrt(2). - Vaclav Kotesovec, Oct 19 2012
a(n) = n!*Sum_{k=0..floor(n/2)}5^k/(2^k*k!*(n-2*k)!). - Luis Manuel Rivera Martínez, Feb 26 2015
O.g.f.: 1/(1-x - 5*x^2/(1-x - 10*x^2/(1-x - 15*x^2/(1-x - 20*x^2/(1-x - 25*x^2/(1-x -...)))))), a continued fraction (after Paul Barry in A115327). - Paul D. Hanna, Mar 08 2015

A362278 Expansion of e.g.f. exp(x - 3*x^2/2).

Original entry on oeis.org

1, 1, -2, -8, 10, 106, -44, -1952, -1028, 45820, 73576, -1301024, -3729032, 43107832, 188540080, -1621988864, -10106292464, 67749173008, 583170088672, -3075285253760, -36315980308064, 148201134917536, 2436107894325568, -7345167010231808
Offset: 0

Views

Author

Seiichi Manyama, Apr 13 2023

Keywords

Crossrefs

Column k=3 of A362277.
Cf. A115327.

Programs

  • Mathematica
    With[{nn=30},CoefficientList[Series[Exp[x-3 x^2/2],{x,0,nn}],x] Range[0,nn]!] (* Harvey P. Dale, Apr 18 2023 *)
  • PARI
    my(N=30, x='x+O('x^N)); Vec(serlaplace(exp(x-3*x^2/2)))

Formula

a(n) = a(n-1) - 3*(n-1)*a(n-2) for n > 1.
a(n) = n! * Sum_{k=0..floor(n/2)} (-3/2)^k / (k! * (n-2*k)!).

A115328 E.g.f: exp(x/(1-3*x))/sqrt(1-9*x^2).

Original entry on oeis.org

1, 1, 16, 100, 2116, 27556, 732736, 14776336, 476112400, 13013333776, 494512742656, 17019717246016, 747017670477376, 30923039616270400, 1542024562112889856, 74433082892402872576, 4161241771884669788416
Offset: 0

Views

Author

Paul D. Hanna, Jan 20 2006

Keywords

Comments

Term-by-term square of sequence with e.g.f.: exp(x+m/2*x^2) is given by e.g.f.: exp(x/(1-m*x))/sqrt(1-m^2*x^2) for all m.

Crossrefs

Cf. A115327.

Programs

  • Mathematica
    CoefficientList[Series[E^(x/(1-3*x))/Sqrt[1-9*x^2], {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Jun 26 2013 *)
  • PARI
    a(n)=local(m=3);n!*polcoeff(exp(x/(1-m*x+x*O(x^n)))/sqrt(1-m^2*x^2+x*O(x^n)),n)

Formula

Equals term-by-term square of A115327 which has e.g.f.: exp(x+3/2*x^2).
D-finite with recurrence: a(n) = (3*n-2)*a(n-1) - 27*(n-1)*(n-2)^2*a(n-3) + 3*(n-1)*(3*n-2)*a(n-2). - Vaclav Kotesovec, Jun 26 2013
a(n) ~ 1/2*exp(-1/6+2*sqrt(n/3)-n)*3^n*n^n. - Vaclav Kotesovec, Jun 26 2013

A266503 Number of symmetric difference-closed 4-sets consisting of sets consisting of an even number of pairwise disjoint 2-subsets of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 0, 0, 15, 105, 735, 4095, 26775, 162855, 1105335, 7187895, 51126075, 356831475, 2676468795, 19890931515, 156769986555, 1232704469115, 10178240218875, 84190426730235, 725667326178795
Offset: 1

Views

Author

John M. Campbell, Jan 24 2016

Keywords

Comments

A set of this form forms a group (isomorphic to the Klein four-group) under the symmetric difference operation. Such sets may be regarded in a natural way as Klein four-subgroups of the alternating group A_n.

Examples

			For example, there are a(n) = 15 sets of this form in the case whereby n=6:
{{{12}, {34}}, {{34}, {56}}, {{12}, {56}}, {}}
{{{12}, {35}}, {{35}, {46}}, {{12}, {46}}, {}}
{{{12}, {36}}, {{36}, {45}}, {{12}, {45}}, {}}
{{{13}, {24}}, {{24}, {56}}, {{13}, {56}}, {}}
{{{13}, {25}}, {{25}, {46}}, {{13}, {46}}, {}}
{{{13}, {26}}, {{26}, {45}}, {{13}, {45}}, {}}
{{{14}, {23}}, {{23}, {56}}, {{14}, {56}}, {}}
{{{14}, {25}}, {{25}, {36}}, {{14}, {36}}, {}}
{{{14}, {26}}, {{26}, {35}}, {{14}, {35}}, {}}
{{{15}, {23}}, {{23}, {46}}, {{15}, {46}}, {}}
{{{15}, {24}}, {{24}, {36}}, {{15}, {36}}, {}}
{{{15}, {26}}, {{26}, {34}}, {{15}, {34}}, {}}
{{{16}, {23}}, {{23}, {45}}, {{16}, {45}}, {}}
{{{16}, {24}}, {{24}, {35}}, {{16}, {35}}, {}}
{{{16}, {25}}, {{25}, {34}}, {{16}, {34}}, {}}
		

Crossrefs

Cf. A267840.

Programs

  • Mathematica
    a[n_] := n!*Sum[Sum[Sum[(2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(KroneckerDelta[i, j]+KroneckerDelta[i, k]+1)!), {k, Max[i, 2*i+2*j-Floor[n/2]], Min[2*j, Floor[1/4*(4*i+4*j-1)]]}], {j, 1, i}], {i, 1, Floor[n/2]}] ; Print[Table[a[n], {n, 1, 22}]] ;
    Rest[CoefficientList[Series[E^x/3 - E^(-x*(x-2)/2)/8 - E^(x*(x+2)/2)/4 + E^(x*(3*x+2)/2)/24, {x, 0, 30}], x] * Range[0, 30]!] (* Vaclav Kotesovec, Apr 10 2016 *)

Formula

a(n) = n!*sum(sum(sum((2^(k-2*i-2*j))/(k!*(2*i-k)!*(2*j-k)!*(n-4*i-4*j+2*k)!*(delta(i, j)+delta(i, k)+1)!), k=max(i, 2*i+2*j-[n/2])..min(2*j, [1/4*(4*i+4*j-1)])), j=1..i), i=1..[n/2]).
From Vaclav Kotesovec, Apr 10 2016: (Start)
Recurrence: (n-6)*(n-4)*(n-2)*a(n) = (2*n - 7)*(2*n^2 - 14*n + 15)*a(n-1) + 3*(n-7)*(n-1)*(n^2 - 7*n + 11)*a(n-2) - (n-2)*(n-1)*(9*n^2 - 85*n + 189)*a(n-3) + (n-3)*(n-2)*(n-1)*(n^2 - n - 22)*a(n-4) - 2*(n-4)^2*(n-3)*(n-2)*(n-1)*a(n-5) - (n-5)*(n-4)*(n-3)*(n-2)*(n-1)*(3*n - 19)*a(n-6) + 3*(n-6)*(n-5)*(n-4)*(n-3)*(n-2)*(n-1)*a(n-7).
E.g.f.: exp(x)/3 - exp(-x*(x-2)/2)/8 - exp(x*(x+2)/2)/4 + exp(x*(3*x+2)/2)/24.
a(n) ~ 2^(-7/2) * 3^(n/2 - 1) * exp(sqrt(n/3) - n/2 - 1/12) * n^(n/2).
(End)
a(n) = 1/3 + (-1)^n*A001464(n)/8 - A000085(n)/4 + A115327(n)/24. - Vaclav Kotesovec, May 28 2016

A267840 Number of symmetric difference-closed 4-sets consisting of the empty set and sets consisting of pairwise disjoint 2-subsets of {1,2,...,n}.

Original entry on oeis.org

0, 0, 0, 3, 15, 105, 525, 3255, 17703, 112455, 669735, 4485195, 29023995, 205768563, 1432735395, 10728177915, 79665069435, 627587657595, 4933313794683, 40724759240235, 336819780949995, 2902978545030795, 25135723046974155, 225455477000793963
Offset: 1

Views

Author

John M. Campbell, Jan 22 2016

Keywords

Comments

Suppose that n people arrive at a meeting, and suppose that the n people arrange themselves into couples, except for a loner if n is odd. The couples then form various organizations. Then a(n) is the number of possible collections of three distinct organizations such that given two organizations in this collection, if a couple belongs to only one of these two organizations, then this couple must be a member of the remaining (third) organization.
A set of this form forms a group (isomorphic to the Klein four-group) under the symmetric difference operation.

Examples

			There are a(n) = 15 sets of this form in the case whereby n=5:
{{}, {{1, 2}}, {{3, 4}}, {{1, 2}, {3, 4}}}
{{}, {{1, 2}}, {{3, 5}}, {{1, 2}, {3, 5}}}
{{}, {{1, 2}}, {{4, 5}}, {{1, 2}, {4, 5}}}
{{}, {{1, 3}}, {{2, 4}}, {{1, 3}, {2, 4}}}
{{}, {{1, 3}}, {{2, 5}}, {{1, 3}, {2, 5}}}
{{}, {{1, 3}}, {{4, 5}}, {{1, 3}, {4, 5}}}
{{}, {{1, 4}}, {{2, 3}}, {{1, 4}, {2, 3}}}
{{}, {{1, 4}}, {{2, 5}}, {{1, 4}, {2, 5}}}
{{}, {{1, 4}}, {{3, 5}}, {{1, 4}, {3, 5}}}
{{}, {{1, 5}}, {{2, 3}}, {{1, 5}, {2, 3}}}
{{}, {{1, 5}}, {{2, 4}}, {{1, 5}, {2, 4}}}
{{}, {{1, 5}}, {{3, 4}}, {{1, 5}, {3, 4}}}
{{}, {{2, 3}}, {{4, 5}}, {{2, 3}, {4, 5}}}
{{}, {{2, 4}}, {{3, 5}}, {{2, 4}, {3, 5}}}
{{}, {{2, 5}}, {{3, 4}}, {{2, 5}, {3, 4}}}
		

Crossrefs

Cf. A266503.

Programs

  • Mathematica
    Table[n!*Sum[Sum[Sum[(2^(k-i-j))/(k!)/(i-k)!/(j-k)!/(n-2i-2j+2k)!/(KroneckerDelta[i, j]+KroneckerDelta[i, 2 k]+1)!, {k, Max[Ceiling[i/2], i+j-Floor[n/2]], Min[j, Floor[1/4*(2i+2j-1)]]}], {j, 1, i}], {i, 1, Floor[n/2]}], {n, 1, 26}]
    Rest[CoefficientList[Series[E^x/3 - E^(x*(x+2)/2)/2 + E^(x*(3*x+2)/2)/6, {x, 0, 20}], x] * Range[0, 20]!] (* Vaclav Kotesovec, Apr 10 2016 *)

Formula

a(n) = n!*sum(sum(sum((2^(k-i-j))/(k!)/(i-k)!/(j-k)!/(n-2i-2j+2k)!/(delta(i, j)+delta(i, 2k)+1)!, k=max(ceiling(i/2), i+j-[n/2])..min(j, [1/4*(2i+2j-1)])), j=1..i), i=1..[n/2]), where delta denotes the Kronecker delta function.
Conjectures from Vaclav Kotesovec, Apr 10 2016: (Start)
Recurrence: (n-4)*(n-2)*a(n) = 3*(n^2 - 5*n + 5)*a(n-1) + (n-1)*(4*n^2 - 27*n + 41)*a(n-2) - (n-2)*(n-1)*(8*n - 29)*a(n-3) - (n-3)*(n-2)*(n-1)*(3*n - 16)*a(n-4) + 3*(n-4)*(n-3)*(n-2)*(n-1)*a(n-5).
E.g.f.: exp(x)/3 - exp(x*(x+2)/2)/2 + exp(x*(3*x+2)/2)/6.
a(n) ~ 2^(-3/2) * 3^(n/2 - 1) * exp(sqrt(n/3) - n/2 - 1/12) * n^(n/2).
(End)
a(n) = 1/3 - A000085(n)/2 + A115327(n)/6. - Vaclav Kotesovec, May 28 2016
Showing 1-6 of 6 results.