A115329 Expansion of e.g.f.: exp(x + 2*x^2).
1, 1, 5, 13, 73, 281, 1741, 8485, 57233, 328753, 2389141, 15539261, 120661465, 866545993, 7140942173, 55667517781, 484124048161, 4046845186145, 36967280461093, 328340133863533, 3137853448906601, 29405064157989241
Offset: 0
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..665 (terms 0..200 from Vincenzo Librandi)
- Magdalena Boos, Giovanni Cerulli Irelli, Francesco Esposito, Parabolic orbits of 2-nilpotent elements for classical groups, arXiv:1802.06425 [math.RT], 2018.
Crossrefs
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 30); Coefficients(R!(Laplace( Exp(x+2*x^2) ))); // G. C. Greubel, Jul 12 2024 -
Maple
a := n -> I^(1 - n)*2^((3*(n - 1))/2)*KummerU((1 - n)/2, 3/2, -1/8): seq(simplify(a(n)), n=0..21); # Peter Luschny, Nov 21 2017
-
Mathematica
Range[0, 20]! CoefficientList[Series[Exp[(x + 2 x^2)], {x, 0, 20}], x] (* Vincenzo Librandi, May 22 2013 *)
-
PARI
a(n)=local(m=4);n!*polcoeff(exp(x+m/2*x^2+x*O(x^n)),n)
-
SageMath
[(-i*sqrt(2))^n*hermite(n, i/(2*sqrt(2))) for n in range(31)] # G. C. Greubel, Jul 12 2024
Formula
Term-by-term square equals A115330 which has e.g.f.: exp(x/(1-4*x))/sqrt(1-16*x^2).
a(n) = Sum_{k=0..floor(n/2)} C(n-k,k)2^k*n!/(n-k)! = Sum_{k=0..n} C(n,k)2^k*(n-k)!/(n-2k)!. - Paul Barry, Nov 07 2008
a(n) = D^n(exp(x)) evaluated at x = 0, where D is the operator sqrt(1+8*x)*d/dx. Cf. A000085 and A047974. - Peter Bala, Dec 07 2011
a(n) = a(n-1) + 4*(n-1)*a(n-2). - R. J. Mathar, Dec 10 2011
a(n) ~ 2^(n-1/2)*exp(sqrt(n)/2-n/2-1/16)*n^(n/2). - Vaclav Kotesovec, Oct 19 2012
G.f.: 1/Q(0), where Q(k)= 1 + 4*x*k - x/(1 - 4*x*(k+1)/Q(k+1)); (continued fraction). - Sergei N. Gladkovskii, Apr 17 2013
G.f.: 1/G(0), where G(k)= 1 - x - 4*(k+1)*x^2/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jul 21 2013
a(n) = i^(1 - n)*2^(3*(n - 1)/2)*KummerU((1 - n)/2, 3/2, -1/8). - Peter Luschny, Nov 21 2017
a(n) = (-i*sqrt(2))^n * Hermite(n, i/(2*sqrt(2))). - G. C. Greubel, Jul 12 2024
Extensions
More terms from Karol A. Penson and P. Blasiak (blasiak(AT)lptl.jussieu.fr), Jun 03 2006
Comments