A115627 Irregular triangle read by rows: T(n,k) = multiplicity of prime(k) as a divisor of n!.
1, 1, 1, 3, 1, 3, 1, 1, 4, 2, 1, 4, 2, 1, 1, 7, 2, 1, 1, 7, 4, 1, 1, 8, 4, 2, 1, 8, 4, 2, 1, 1, 10, 5, 2, 1, 1, 10, 5, 2, 1, 1, 1, 11, 5, 2, 2, 1, 1, 11, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 15, 6, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 16, 8, 3, 2, 1, 1, 1, 1
Offset: 2
Examples
From _Gus Wiseman_, May 09 2019: (Start) Triangle begins: 1 1 1 3 1 3 1 1 4 2 1 4 2 1 1 7 2 1 1 7 4 1 1 8 4 2 1 8 4 2 1 1 10 5 2 1 1 10 5 2 1 1 1 11 5 2 2 1 1 11 6 3 2 1 1 15 6 3 2 1 1 15 6 3 2 1 1 1 16 8 3 2 1 1 1 16 8 3 2 1 1 1 1 18 8 4 2 1 1 1 1 (End) m such that 5^m||101!: floor(log(101)/log(5)) = 2 terms. floor(101/5) = 20. floor(20/5) = 4. So m = u_1 + u_2 = 20 + 4 = 24. - _David A. Corneth_, Jun 22 2014
Links
- T. D. Noe, Rows n = 2..300, flattened
- H. T. Davis, Tables of the Mathematical Functions, Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX. [Annotated scan of pages 204-208 of Volume 2.] See Table 2 on page 206.
- Wenguang Zhai, On the prime power factorization of n!, Journal of Number Theory, Volume 129, Issue 8, August 2009, pages 1820-1836.
- Index entries for sequences related to factorial numbers
Crossrefs
Programs
-
Haskell
a115627 n k = a115627_tabf !! (n-2) !! (k-1) a115627_row = map a100995 . a141809_row . a000142 a115627_tabf = map a115627_row [2..] -- Reinhard Zumkeller, Nov 01 2013
-
Maple
A115627 := proc(n,k) local d,p; p := ithprime(k) ; n-add(d,d=convert(n,base,p)) ; %/(p-1) ; end proc: # R. J. Mathar, Oct 29 2010
-
Mathematica
Flatten[Table[Transpose[FactorInteger[n!]][[2]], {n, 2, 20}]] (* T. D. Noe, Apr 10 2012 *) T[n_, k_] := Module[{p, jm}, p = Prime[k]; jm = Floor[Log[p, n]]; Sum[Floor[n/p^j], {j, 1, jm}]]; Table[Table[T[n, k], {k, 1, PrimePi[n]}], {n, 2, 20}] // Flatten (* Jean-François Alcover, Feb 23 2015 *)
-
PARI
a(n)=my(i=2);while(n-primepi(i)>1,n-=primepi(i);i++);p=prime(n-1);sum(j=1,log(i)\log(p),i\=p) \\ David A. Corneth, Jun 21 2014
Formula
T(n,k) = Sum_{i=1..inf} floor(n/(p_k)^i). (Although stated as an infinite sum, only finitely many terms are nonzero.)
T(n,k) = Sum_{i=1..floor(log(n)/log(p_k))} floor(u_i) where u_0 = n and u_(i+1) = floor((u_i)/p_k). - David A. Corneth, Jun 22 2014
Comments