cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116149 a(n) = sum of n consecutive cubes after n^3.

Original entry on oeis.org

8, 91, 405, 1196, 2800, 5643, 10241, 17200, 27216, 41075, 59653, 83916, 114920, 153811, 201825, 260288, 330616, 414315, 512981, 628300, 762048, 916091, 1092385, 1292976, 1520000, 1775683, 2062341, 2382380, 2738296, 3132675, 3568193
Offset: 1

Views

Author

Zak Seidov, Apr 14 2007

Keywords

Examples

			a(1) = sum of 1 cube  after 1^3 = 2^3 = 8,
a(2) = sum of 2 cubes after 2^3 = 3^3+4^3 = 91,
a(3) = sum of 3 cubes after 3^3 = 4^3+5^3+6^3 = 405,
a(4) = sum of 4 cubes after 4^3 = 5^3+6^3+7^3+8^3 = 1196.
		

Crossrefs

Programs

  • GAP
    List([1..40], n-> n^2*(1+3*n)*(3+5*n)/4); # G. C. Greubel, May 10 2019
  • Magma
    [n^2*(1+3*n)*(3+5*n)/4: n in [1..40]]; // G. C. Greubel, May 10 2019
    
  • Mathematica
    With[{cbs=Range[100]^3},Table[Total[Take[cbs,{n+1,2n}]],{n,35}]]  (* Harvey P. Dale, Feb 13 2011 *)
  • PARI
    {a(n) = n^2*(1+3*n)*(3+5*n)/4}; \\ G. C. Greubel, May 10 2019
    
  • Sage
    [n^2*(1+3*n)*(3+5*n)/4 for n in (1..40)] # G. C. Greubel, May 10 2019
    

Formula

a(n) = n^2*(1 + 3*n)*(3 + 5*n)/4.
G.f.: x*(8 +51*x + 30*x^2 + x^3)/(1-x)^5. - Colin Barker, Dec 17 2012
a(n) = A000217(2*n)^2 - A000217(n)^2. - Bruno Berselli, Aug 31 2017
From G. C. Greubel, May 10 2019: (Start)
a(n) = Sum_{k=(n+1)..2*n} k^3.
E.g.f.: x*(32 + 150*x + 104*x^2 + 15*x^3)*exp(x)/4. (End)