cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A217843 Numbers which are the sum of one or more consecutive nonnegative cubes.

Original entry on oeis.org

0, 1, 8, 9, 27, 35, 36, 64, 91, 99, 100, 125, 189, 216, 224, 225, 341, 343, 405, 432, 440, 441, 512, 559, 684, 729, 748, 775, 783, 784, 855, 1000, 1071, 1196, 1241, 1260, 1287, 1295, 1296, 1331, 1584, 1728, 1729, 1800, 1925, 1989, 2016, 2024, 2025, 2197
Offset: 1

Views

Author

T. D. Noe, Oct 23 2012

Keywords

Comments

Contains A000578 (cubes), A005898 (two consecutive cubes), A027602 (three consecutive cubes), A027603 (four consecutive cubes) etc. - R. J. Mathar, Nov 04 2012
See A265845 for sums of consecutive positive cubes in more than one way. - Reinhard Zumkeller, Dec 17 2015
From Lamine Ngom, Apr 15 2021: (Start)
a(n) can always be expressed as the difference of the squares of two triangular numbers (A000217).
A168566 is the subsequence A000217(n)^2 - 1.
a(n) is also the product of two nonnegative integers whose sum and difference are both promic.
See example and formula sections for details. (End)

Examples

			From _Lamine Ngom_, Apr 15 2021: (Start)
Arrange the positive terms in a triangle as follows:
n\k |   1    2    3    4    5    6    7
----+-----------------------------------
  0 |   1;
  1 |   8,   9;
  2 |  27,  35,  36;
  3 |  64,  91,  99, 100;
  4 | 125, 189, 216, 224, 225;
  5 | 216, 341, 405, 432, 440, 441;
  6 | 343, 559, 684, 748, 775, 783, 784;
Column 1: cubes = A000217(n+1)^2 - A000217(n)^2.
The difference of the squares of two consecutive triangular numbers (A000217) is a cube (A000578).
Column 2: sums of 2 consecutive cubes (A027602).
Column 3: sums of 3 consecutive cubes (A027603).
etc.
Column k: sums of k consecutive cubes.
Row n: A000217(n)^2 - A000217(m)^2, m < n.
T(n,n) = A000217(n)^2 (main diagonal).
T(n,n-1) = A000217(n)^2 - 1 (A168566) (2nd diagonal).
Now rectangularize this triangle as follows:
n\k |   1    2     3     4    5     6   ...
----+--------------------------------------
  0 |   1,   9,   36,  100,  225,  441, ...
  1 |   8,  35,   99,  224,  440,  783, ...
  2 |  27,  91,  216,  432,  775, 1287, ...
  3 |  64, 189,  405,  748, 1260, 1989, ...
  4 | 125, 341,  684, 1196, 1925, 2925, ...
  5 | 216, 559, 1071, 1800, 2800, 4131, ...
  6 | 343, 855, 1584, 2584, 3915, 5643, ...
The general form of terms is:
T(n,k) = [n^4 + A016825(k)*n^3 + A003154(k)*n^2 + A300758(k)*n]/4, sum of n consecutive cubes after k^3.
This expression can be factorized into [n*(n + A005408(k))*(n*(n + A005408(k)) + 4*A000217(k))]/4.
For k = 1, the sequence provides all cubes: T(n,1) = A000578(k).
For k = 2, T(n,2) = A005898(k), centered cube numbers, sum of two consecutive cubes.
For k = 3, T(n,3) = A027602(k), sum of three consecutive cubes.
For k = 4, T(n,4) = A027603(k), sum of four consecutive cubes.
For k = 5, T(n,5) = A027604(k), sum of five consecutive cubes.
T(n,n) = A116149(n), sum of n consecutive cubes after n^3 (main diagonal).
For n = 0, we obtain the subsequence T(0,k) = A000217(n)^2, product of two numbers whose difference is 0*1 (promic) and sum is promic too.
For n = 1, we obtain the subsequence T(1,k) = A168566(x), product of two numbers whose difference is 1*2 (promic) and sum is promic too.
For n = 2, we obtain the subsequence T(2,k) = product of two numbers whose difference is 2*3 (promic) and sum is promic too.
etc.
For n = x, we obtain the subsequence formed by products of two numbers whose difference is the promic x*(x+1) and sum is promic too.
Consequently, if m is in the sequence, then m can be expressed as the product of two nonnegative integers whose sum and difference are both promic. (End)
		

Crossrefs

Cf. A265845 (subsequence).
Cf. A000217 (triangular numbers), A046092 (4*A000217).
Cf. A168566 (A000217^2 - 1).
Cf. A002378 (promics), A016825 (singly even numbers), A003154 (stars numbers).
Cf. A000330 (square pyramidal numbers), A300758 (12*A000330).
Cf. A005408 (odd numbers).

Programs

  • Haskell
    import Data.Set (singleton, deleteFindMin, insert, Set)
    a217843 n = a217843_list !! (n-1)
    a217843_list = f (singleton (0, (0,0))) (-1) where
       f s z = if y /= z then y : f s'' y else f s'' y
                  where s'' = (insert (y', (i, j')) $
                               insert (y' - i ^ 3 , (i + 1, j')) s')
                        y' = y + j' ^ 3; j' = j + 1
                        ((y, (i, j)), s') = deleteFindMin s
    -- Reinhard Zumkeller, Dec 17 2015, May 12 2015
    
  • Mathematica
    nMax = 3000; t = {0}; Do[k = n; s = 0; While[s = s + k^3; s <= nMax, AppendTo[t, s]; k++], {n, nMax^(1/3)}]; t = Union[t]
  • PARI
    lista(nn) = {my(list = List([0])); for (i=1, nn, my(s = 0); forstep(j=i, 1, -1, s += j^3; if (s > nn^3, break); listput(list, s););); Set(list);} \\ Michel Marcus, Nov 13 2020

Formula

a(n) >> n^2. Probably a(n) ~ kn^2 for some k but I cannot prove this. - Charles R Greathouse IV, Aug 07 2013
a(n) is of the form [x*(x+2*k+1)*(x*(x+2*k+1)+2*k*(k+1))]/4, sum of n consecutive cubes starting from (k+1)^3. - Lamine Ngom, Apr 15 2021

Extensions

Name edited by N. J. A. Sloane, May 24 2021

A240137 Sum of n consecutive cubes starting from n^3.

Original entry on oeis.org

0, 1, 35, 216, 748, 1925, 4131, 7840, 13616, 22113, 34075, 50336, 71820, 99541, 134603, 178200, 231616, 296225, 373491, 464968, 572300, 697221, 841555, 1007216, 1196208, 1410625, 1652651, 1924560, 2228716, 2567573, 2943675, 3359656, 3818240, 4322241, 4874563
Offset: 0

Views

Author

Bruno Berselli, Apr 02 2014

Keywords

Comments

Sum_{i>=1} 1/a(i) = 1.0356568858420883122567711052556541...
Consider the partitions of 2n into two parts (p,q) where p <= q. Then a(n) is the total volume of the family of cubes with side length q. - Wesley Ivan Hurt, Apr 15 2018
A180920 lists the numbers k such that a(k) is a square. - Jon E. Schoenfield, Mar 13 2022

Examples

			a(3) = 216 because 216 = 3^3 + 4^3 + 5^3.
		

Crossrefs

Subsequence of A217843.
Cf. A116149: sum of n consecutive cubes after n^3.
Cf. A050410: sum of n consecutive squares starting from n^2.
Cf. A000326 (pentagonal numbers): sum of n consecutive integers starting from n.
Cf. A126274: n-th triangular number (A000217) * n-th pentagonal number (A000326).

Programs

  • Magma
    [n^2*(3*n-1)*(5*n-3)/4: n in [0..40]];
    
  • Maple
    A240137:=n->n^2*(3*n-1)*(5*n-3)/4; seq(A240137(n), n=0..40); # Wesley Ivan Hurt, May 09 2014
  • Mathematica
    Table[n^2 (3 n - 1) (5 n - 3)/4, {n, 0, 40}]
    CoefficientList[Series[x (1 + 30 x + 51 x^2 + 8 x^3)/(1 - x)^5, {x, 0, 40}], x] (* Vincenzo Librandi, May 09 2014 *)
  • PARI
    a(n)=n^2*(3*n-1)*(5*n-3)/4 \\ Charles R Greathouse IV, Oct 07 2015
  • Sage
    [n^2*(3*n-1)*(5*n-3)/4 for n in [0..40]]
    

Formula

G.f.: x*(1 + 30*x + 51*x^2 + 8*x^3)/(1 - x)^5.
a(n) = n^2*(3*n - 1)*(5*n - 3)/4 = A000326(n)*A000566(n).
a(n) = A116149(-n), with A116149(0)=0.
a(n) = Sum_{j=n..2n-1} j^3. - Jon E. Schoenfield, Mar 13 2022

A116280 n times n+3 gives the concatenation of two numbers m and m-1.

Original entry on oeis.org

6, 77, 80918, 91808, 326509, 475024, 524974, 673489, 4323776, 4767131, 5232867, 5676222, 4083911140, 4975000249, 5024999749, 5916088858, 9503960495, 9604950395, 4186904462791, 4313465946774, 5686534053224, 5813095537207
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A116143 Numbers k such that k concatenated with k-2 gives the product of two numbers which differ by 3.

Original entry on oeis.org

10, 100, 132, 406, 510, 852, 1000, 7930, 10000, 66942, 100000, 113322, 440056, 1000000, 5289256, 10000000, 58477510, 100000000, 111333222, 164378892, 183673470, 200444410, 206611570, 224376732, 277008310, 297520662
Offset: 1

Views

Author

Giovanni Resta, Feb 06 2006

Keywords

Crossrefs

A349928 a(n) = Sum_{k=0..n} (k+n)^k.

Original entry on oeis.org

1, 3, 20, 246, 4481, 107129, 3157836, 110504876, 4473749677, 205615442135, 10574135574388, 601527803412298, 37500537926181449, 2542321872054610333, 186209553386691383388, 14653121207168215024624, 1232879877057607865696085, 110444572988776439826640683
Offset: 0

Views

Author

Seiichi Manyama, Dec 05 2021

Keywords

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[n_] := Sum[(k + n)^k, {k, 0, n}]; Array[a, 18, 0] (* Amiram Eldar, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, (k+n)^k);

Formula

a(n) ~ 2^n * n^n. - Vaclav Kotesovec, Dec 06 2021
Showing 1-5 of 5 results.