cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A351320 a(n) is the unique integer k such that k * A116436(n) = 1.A116436(n).1 where "." stands for concatenation.

Original entry on oeis.org

111, 101, 87, 23, 21, 83, 21, 21, 27, 101, 87, 29, 23, 21, 33, 21, 83, 21, 39, 101, 87, 23, 21, 21, 21, 83, 101, 87, 59, 23, 21, 99, 57, 21, 27, 21, 101, 87, 29, 23, 21, 83, 69, 21, 71, 21, 101, 87, 33, 23, 21, 21, 83, 21, 101, 87, 23, 21, 27, 21, 39, 21, 83, 101, 87, 29, 23, 21, 21, 107, 21, 101
Offset: 1

Views

Author

Bernard Schott, Feb 07 2022

Keywords

Comments

Except for a(1) = 111, which is unique, all terms appear infinitely many times and belong to this set of fifteen integers: {21, 23, 27, 29, 33, 39, 57, 59, 69, 71, 83, 87, 99, 101, 107}; see A329914.
The corresponding indices where these integers appear the first time are respectively: 5, 4, 9, 12, 15, 19, 33, 29, 43, 45, 6, 3, 32, 2, 70.

Examples

			A116436(1) = 1 and 111 * 1 = 1.1.1, hence a(1) = 111.
A116436(2) = 11 and 101 * 11 = 1.11.1, hence a(2) = 101.
A116436(32) = 112359550561797752809 and 99 * 112359550561797752809 = 1.112359550561797752809.1 hence a(32) = 99 (see Penguin reference).
		

References

  • David Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.

Crossrefs

M such that k*M=1M1 for: A095372 \ {1} (k=21), A331630 (k=23), A351237 (k=83), A351238 (k=87), A351239 (k=101).

Programs

  • PARI
    A116436(k) = {local(l, d, lb, ub); d=divisors(10^(k+1)+1); l=[]; lb=10^(k-1); ub=10*lb; for(i=1, #d, if(d[i]>=lb&&d[i]A116436
    a(n) = {my(v6=[], i=1); while (#v6 < n, v6 = concat(v6, A116436(i)); i++); my(x= v6[n]); my(k=1); while (eval(Str(1, x, 1)) % x, k++); eval(Str(1, x, 1))/x;} \\ Michel Marcus, Feb 10 2022

Formula

a(n) * A116436(n) = 1.A116436(n).1 where "." stands for concatenation.

A116437 Numbers k which when sandwiched between two 2's give a multiple of k.

Original entry on oeis.org

1, 2, 11, 13, 14, 22, 26, 77, 91, 137, 146, 274, 9091, 19802, 909091, 5882353, 10989011, 12987013, 13986014, 15037594, 21978022, 25974026, 52631579, 76923077, 90909091, 198019802, 1652892562, 4347826087, 8695652174, 9090909091, 13698630137, 14598540146, 27397260274
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			77 belongs since 2772 is a multiple of 77 (77*36).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[2, 10] (* Ray Chandler, May 11 2007 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 2]
        for k in count(2):
            t = 2*(10**(k+1) + 1)
            yield from (t//i for i in range(200, 20, -1) if t%i == 0)
    print(list(islice(agen(), 33))) # Michael S. Branicky, Mar 26 2023

Extensions

a(30) and beyond from Michael S. Branicky, Mar 26 2023

A116438 Numbers k which when sandwiched between two 3's give a multiple of k.

Original entry on oeis.org

1, 3, 11, 13, 21, 33, 39, 77, 91, 137, 219, 411, 9091, 29703, 909091, 5882353, 10989011, 12145749, 12987013, 14354067, 20979021, 22556391, 32967033, 38961039, 52631579, 76923077, 90909091, 297029703, 1185770751, 2479338843, 4347826087, 9090909091, 13698630137
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			219 belongs since 32193 is a multiple of 219 (219*147).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[3, 10] (* Ray Chandler, May 11 2007 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 3]
        for k in count(2):
            t = 3*(10**(k+1) + 1)
            yield from (t//i for i in range(300, 30, -1) if t%i == 0)
    print(list(islice(agen(), 33))) # Michael S. Branicky, Mar 26 2023

Extensions

a(31) and beyond from Michael S. Branicky, Mar 26 2023

A116439 Numbers k which when sandwiched between two 4's give a multiple of k.

Original entry on oeis.org

1, 2, 4, 11, 13, 14, 22, 26, 28, 44, 52, 77, 91, 137, 146, 274, 292, 548, 9091, 19802, 39604, 909091, 5882353, 10989011, 12987013, 13986014, 15037594, 16194332, 19138756, 21978022, 25974026, 27972028, 30075188, 43956044, 51948052, 52631579, 76923077, 90909091
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			91 belongs since 4914 is a multiple of 91 (91*54).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[4, 9] (* Ray Chandler, May 11 2007 *)
    Select[Range[52000000],Divisible[FromDigits[Join[{4}, IntegerDigits[#],{4}]],#]&]  (* Harvey P. Dale, Mar 14 2011 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 2, 4]
        for k in count(2):
            t = 4*(10**(k+1) + 1)
            yield from (t//i for i in range(400, 40, -1) if t%i == 0)
    print(list(islice(agen(), 38))) # Michael S. Branicky, Mar 26 2023

Extensions

a(36) and beyond from Michael S. Branicky, Mar 26 2023

A116440 Numbers k which when sandwiched between two 5's give a multiple of k.

Original entry on oeis.org

1, 5, 11, 13, 35, 55, 65, 77, 91, 137, 365, 685, 9091, 49505, 909091, 5882353, 10989011, 12987013, 20242915, 23923445, 34965035, 37593985, 52631579, 54945055, 64935065, 76923077, 90909091, 495049505, 1976284585, 4132231405, 4347826087, 9090909091, 13698630137
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Comments

All terms must be odd. - Harvey P. Dale, Jul 29 2015

Examples

			137 belongs since 51375 is a multiple 137 (137*375).
		

Crossrefs

Programs

  • Maple
    a:=proc(n) local nn: nn:=convert(n,base,10): if type((5+10*n+5*10^(nops(nn)+1))/n, integer)=true then n else fi end: seq(a(n),n=1..10000); # Emeric Deutsch, Feb 28 2006
  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[5, 10] (* Ray Chandler, May 11 2007 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 5]
        for k in count(2):
            t = 5*(10**(k+1) + 1)
            yield from (t//i for i in range(500, 50, -1) if t%i == 0)
    print(list(islice(agen(), 33))) # Michael S. Branicky, Mar 26 2023

Extensions

a(31) and beyond from Michael S. Branicky, Mar 26 2023

A116441 Numbers k which when sandwiched between two 6's give a multiple of k.

Original entry on oeis.org

1, 2, 3, 6, 11, 13, 14, 21, 22, 26, 33, 39, 42, 66, 77, 78, 91, 137, 146, 219, 274, 411, 438, 822, 9091, 19802, 29703, 59406, 909091, 5882353, 10989011, 12145749, 12987013, 13986014, 14354067, 15037594, 20979021, 21978022, 22556391, 24291498, 25974026, 28708134
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			39 belongs to the sequence since 6396 is a multiple of 39 (39*164).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[6, 8] (* Ray Chandler, May 11 2007 *)
    Select[Range[23000000],Divisible[FromDigits[Join[{6},IntegerDigits[#],{6}]],#]&]  (* Harvey P. Dale, Jan 12 2011 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 2, 3, 6]
        for k in count(2):
            t = 6*(10**(k+1) + 1)
            yield from (t//i for i in range(600, 60, -1) if t%i == 0)
    print(list(islice(agen(), 42))) # Michael S. Branicky, Mar 26 2023

Extensions

a(40) and beyond from Michael S. Branicky, Mar 26 2023

A116442 Numbers n which when sandwiched between two 7's give a multiple of n.

Original entry on oeis.org

1, 7, 11, 13, 49, 77, 91, 137, 511, 959, 9091, 69307, 909091, 5882353, 10989011, 12987013, 28340081, 33492823, 48951049, 52631579, 76923077, 90909091, 693069307, 2766798419, 4347826087, 5785123967, 9090909091, 13698630137, 51094890511, 95890410959, 909090909091
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			511 belongs since 75117 is a multiple 511 (511*147).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[7, 11] (* Ray Chandler, May 11 2007 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 7]
        for k in count(2):
            t = 7*(10**(k+1) + 1)
            yield from (t//i for i in range(700, 70, -1) if t%i == 0)
    print(list(islice(agen(), 32))) # Michael S. Branicky, Mar 26 2023

Extensions

a(29) and beyond from Michael S. Branicky, Mar 26 2023

A116443 Numbers k which when sandwiched between two 8's give a multiple of k.

Original entry on oeis.org

1, 2, 4, 8, 11, 13, 14, 22, 26, 28, 44, 52, 56, 77, 88, 91, 137, 146, 274, 292, 548, 584, 9091, 19802, 39604, 79208, 909091, 5882353, 10989011, 12987013, 13986014, 15037594, 16194332, 19138756, 21978022, 25974026, 27972028, 30075188, 32388664, 38277512, 43956044
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			91 belongs since 8918 is a multiple of 91 (91*98 = 8918).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[8, 8] f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[9, 8] (* Ray Chandler, May 11 2007 *)
    Select[Range[301*10^5],Divisible[FromDigits[Join[{8},IntegerDigits[#],{8}]],#]&] (* Harvey P. Dale, Aug 27 2019 *)
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 2, 4, 8]
        for k in count(2):
            t = 8*(10**(k+1) + 1)
            yield from (t//i for i in range(800, 80, -1) if t%i == 0)
    print(list(islice(agen(), 41))) # Michael S. Branicky, Mar 26 2023

Extensions

a(39) and beyond from Michael S. Branicky, Mar 26 2023

A116444 Numbers k which when sandwiched between two 9's give a multiple of k.

Original entry on oeis.org

1, 3, 9, 11, 13, 21, 33, 39, 63, 77, 91, 99, 137, 219, 411, 657, 9091, 29703, 89109, 909091, 5882353, 10989011, 12145749, 12987013, 14354067, 20979021, 22556391, 32967033, 36437247, 38961039, 43062201, 52631579, 62937063, 67669173, 76923077, 90909091, 98901099
Offset: 1

Views

Author

Giovanni Resta, Feb 15 2006

Keywords

Examples

			411 belongs since 94119 is a multiple of 411 (411*229).
		

Crossrefs

Programs

  • Mathematica
    f[k_, d_] := Flatten@Table[Select[Divisors[k*(10^(i + 1) + 1)], IntegerLength[ # ] == i &], {i, d}]; f[9, 8] (* Ray Chandler, May 11 2007 *)
    Select[Range[10^6],Mod[FromDigits[Join[{9},IntegerDigits[#],{9}]],#]==0&] (* The program generates the first 20 terms of the sequence. *) (* Harvey P. Dale, Jan 20 2025 *)
  • PARI
    for(d=1,10,fordiv(9*10^(d+1)+9,a,if(#Str(a)==d,print1(a", ")))) /* Martin Fuller, May 10 2007 */
    
  • Python
    from sympy import isprime
    from itertools import count, islice
    def agen(): # generator of terms
        yield from [1, 3, 9]
        for k in count(2):
            t = 9*(10**(k+1) + 1)
            yield from (t//i for i in range(900, 90, -1) if t%i == 0)
    print(list(islice(agen(), 38))) # Michael S. Branicky, Mar 26 2023

Extensions

Corrected by Martin Fuller, May 10 2007
a(35) and beyond from Michael S. Branicky, Mar 26 2023

A331630 Numbers M such that 23 * M = 1M1, where 1M1 denotes the concatenation of 1, M and 1.

Original entry on oeis.org

77, 76923077, 76923076923077, 76923076923076923077, 76923076923076923076923077, 76923076923076923076923076923077, 76923076923076923076923076923076923077, 76923076923076923076923076923076923076923077
Offset: 1

Views

Author

Bernard Schott, Jan 23 2020

Keywords

Comments

There are only 15 numbers k such that there exist numbers M_k which, when 1 is placed at both ends of M_k, the number M_k is multiplied by k; 23 is the second such integer, so 23 = A329914(2), and a(1) = A329915(2) = 77; hence, the terms of this sequence form the infinite set {M_23}.
Every term M = a(n) has q = 6*n-4 digits, and 10^(q+1)+1 that has 6*n-4 zeros in its decimal expansion is equal to 13 * M, so M is a divisor of 10^(6*n-3)+1. Example: a(2) = 76923077 has 8 digits and 13 * 76923077 = 1000000001 that has 8 zeros in its decimal expansion.

Examples

			23 * 77 = 1771, hence 77 is a term.
23 * 76923076923077 = 1(76923076923077)1, and 76923076923077 is another term.
		

References

  • D. Wells, 112359550561797732809 entry, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1997, p. 196.

Crossrefs

Subsequence of A116436.
Cf. A329914, A329915, A095372 \ {1} (similar for k = 21).

Programs

  • Maple
    seq((10^(6*m-3)+1)/13, m=1..15);
  • Mathematica
    Array[(10^(6 # - 3) + 1)/13 &, 9] (* Michael De Vlieger, Jan 24 2020 *)
    LinearRecurrence[{1000001,-1000000},{77,76923077},10] (* Harvey P. Dale, Mar 03 2023 *)
  • PARI
    vector(9, n, (10^(6*n-3)+1)/13) \\ Michel Marcus, Jan 25 2020
    
  • PARI
    Vec(77*x*(1 - 1000*x) / ((1 - x)*(1 - 1000000*x)) + O(x^10)) \\ Colin Barker, Jan 25 2020
    
  • PARI
    apply( {A331630(n)=10^(6*n-3)\/13}, [1..9]) \\ M. F. Hasler, Jan 26 2020, following Michel Marcus

Formula

a(n) = (10^(6*n-3)+1)/13 for n >= 1.
From Colin Barker, Jan 25 2020: (Start)
G.f.: 77*x*(1 - 1000*x) / ((1 - x)*(1 - 1000000*x)).
a(n) = 1000001*a(n-1) - 1000000*a(n-2) for n>2.
a(n) = (1000 + 1000^(2*n))/13000 for n>0.
(End)
E.g.f.: exp(x)*(1000 + exp(999999*x))/13000 - 77/1000. - Stefano Spezia, Jan 26 2020
Showing 1-10 of 14 results. Next