cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A257001 Numbers such that the largest missing digit is a divisor.

Original entry on oeis.org

18, 27, 36, 45, 54, 63, 72, 81, 96, 98, 108, 117, 126, 135, 144, 153, 162, 171, 180, 189, 192, 207, 216, 225, 234, 243, 252, 261, 270, 288, 296, 306, 315, 324, 333, 342, 351, 360, 378, 387, 392, 405, 414, 423, 432, 441, 450, 468, 477, 486, 496, 504, 513, 522
Offset: 1

Views

Author

Keywords

Comments

a(n) mod A000030(A230959(a(n))) = 0.
Pandigital numbers are not terms: A171102, A050278.
The original definition used the phrase "largest absent digit".

Crossrefs

Programs

  • Haskell
    import Data.List ((\\)); import Data.Char (digitToInt)
    a257001 n = a257001_list !! (n-1)
    a257001_list = filter f [1..] where
       f x = h > 0 && mod x h == 0 where h = a000030 $ a230959 x
  • Mathematica
    f[x_]:=Union[Sort[IntegerDigits[x]]];
    d={1,2,3,4,5,6,7,8,9};
    Select[Range[525],And[f[#]!=d,Length[f[#]]<10,IntegerQ[#/Max[Complement[d,f[#]]]]]&] (* Ivan N. Ianakiev, Apr 14 2015 *)

A276169 Primes that remain primes after adding to them their largest missing digit.

Original entry on oeis.org

2, 29, 59, 149, 191, 269, 359, 449, 479, 491, 569, 593, 599, 719, 911, 929, 1109, 1193, 1229, 1319, 1439, 1559, 1619, 1979, 1987, 2129, 2339, 2459, 2549, 2609, 2699, 2897, 2909, 2963, 3209, 3299, 3449, 3491, 3539, 3719, 3911, 3923, 4019, 4049, 4091, 4349, 4649, 4793, 4943, 4987, 5099, 5399, 5519, 5639, 5693, 5897
Offset: 1

Views

Author

Zak Seidov and Eric Angelini, Aug 22 2016

Keywords

Comments

Resulting primes are: 11, 37, 67, 157, 199, 277, 367, 457, 487, 499, 577, 601, 607, 727, 919, 937, 1117, 1201, 1237, 1327, 1447, 1567, 1627, 1987, 1993, 2137.
If n > 2, the largest missing digit must be even, so in particular n contains digit 9. - Robert Israel, Sep 01 2016
Pandigital primes not included. - Zak Seidov, Sep 02 2016

Examples

			2+9=11, 29+8=37, 59+8=67 all primes.
		

Crossrefs

Cf. A116667 (largest missing digit).

Programs

  • Maple
    lmd:= n -> max({$1..9} minus convert(convert(n,base,10),set)):
    select(t -> isprime(t) and isprime(t + lmd(t)), [2,seq(i,i=3..10000,2)]); # Robert Israel, Sep 01 2016
  • Mathematica
    Select[Prime[Range[1000]],PrimeQ[#+Complement[Range[9],IntegerDigits[#]][[-1]]]&]
  • PARI
    is(n) = {my(s); if(isprime(n), s = setminus(s=Set(vector(9, i, i)), Set(digits(n))); if(#s>0, n+=s[#s], return(0)); return(isprime(n)))} \\ David A. Corneth, Aug 23 2016
Showing 1-2 of 2 results.