A116697 a(n) = -a(n-1) - a(n-3) + a(n-4).
1, 1, -2, 2, -2, 5, -9, 13, -20, 34, -56, 89, -143, 233, -378, 610, -986, 1597, -2585, 4181, -6764, 10946, -17712, 28657, -46367, 75025, -121394, 196418, -317810, 514229, -832041, 1346269, -2178308, 3524578, -5702888
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (-1,0,-1,1).
Crossrefs
Programs
-
Haskell
a116697 n = a116697_list !! n a116697_list = [1,1,-2,2] ++ (zipWith (-) a116697_list $ zipWith (+) (tail a116697_list) (drop 3 a116697_list)) a128535_list = 0 : (map negate $ map a116697 [0,2..]) a001519_list = 1 : map a116697 [1,3..] a186679_list = zipWith (-) (tail a116697_list) a116697_list a128533_list = map a186679 [0,2..] a081714_list = 0 : (map negate $ map a186679 [1,3..]) a075193_list = 1 : -3 : (zipWith (+) a186679_list $ drop 2 a186679_list) -- Reinhard Zumkeller, Feb 25 2011
-
Magma
A116697:= func< n | (-1)^Floor((n+1)/2)*(1+(-1)^n)/2 -(-1)^n*Fibonacci(n) >; [A116697(n): n in [0..50]]; // G. C. Greubel, Jun 08 2025
-
Mathematica
LinearRecurrence[{-1,0,-1,1},{1,1,-2,2},40] (* Harvey P. Dale, Nov 04 2011 *)
-
SageMath
def A116697(n): return (-1)^(n//2)*((n+1)%2) - (-1)^n*fibonacci(n) print([A116697(n) for n in range(51)]) # G. C. Greubel, Jun 08 2025
Formula
G.f.: (1 + 2*x - x^2 + x^3)/((1 + x^2)*(1 + x - x^2)).
a(2*n) = - A128535(n+1). - Reinhard Zumkeller, Feb 25 2011
E.g.f.: cos(x) + (2/sqrt(5))*exp(-x/2)*sinh(sqrt(5)*x/2). - G. C. Greubel, Jun 08 2025