A116882 A number k is included if (highest odd divisor of k)^2 <= k.
1, 2, 4, 8, 12, 16, 24, 32, 40, 48, 56, 64, 80, 96, 112, 128, 144, 160, 176, 192, 208, 224, 240, 256, 288, 320, 352, 384, 416, 448, 480, 512, 544, 576, 608, 640, 672, 704, 736, 768, 800, 832, 864, 896, 928, 960, 992, 1024, 1088, 1152, 1216, 1280, 1344, 1408
Offset: 1
Examples
40 = 8 * 5, where 8 is highest power of 2 dividing 40 and 5 is the highest odd dividing 40. 8 is >= 5 (so 5^2 <= 40), so 40 is in the sequence.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Hsien-Kuei Hwang, Svante Janson, and Tsung-Hsi Tsai, Identities and periodic oscillations of divide-and-conquer recurrences splitting at half, arXiv:2210.10968 [cs.DS], 2022, p. 38.
- Milan Janjic and Boris Petkovic, A Counting Function, arXiv 1301.4550 [math.CO], 2013.
- Amelia Carolina Sparavigna, Discussion of the groupoid of Proth numbers (OEIS A080075), Politecnico di Torino, Italy (2019).
Crossrefs
Programs
-
Mathematica
f[n_] := Select[Divisors[n], OddQ[ # ] &][[ -1]]; Insert[Select[Range[2, 1500], 2^FactorInteger[ # ][[1]][[2]] > f[ # ] &], 1, 1] (* Stefan Steinerberger, Apr 10 2006 *) q[n_] := 2^(2*IntegerExponent[n, 2]) >= n; Select[Range[1500], q] (* Amiram Eldar, Jan 24 2023 *)
-
PARI
isok(n) = vecmax(select(x->((x % 2)==1), divisors(n)))^2 <= n; \\ Michel Marcus, Sep 06 2016
-
PARI
isok(n) = 2^(valuation(n,2)*2) >= n \\ Jeppe Stig Nielsen, Feb 19 2019
-
Python
from itertools import count, islice def A116882_gen(startvalue=1): # generator of terms >= startvalue return filter(lambda n:(n&-n)**2>=n,count(max(startvalue,1))) A116882_list = list(islice(A116882_gen(),20)) # Chai Wah Wu, May 17 2023
Formula
a(n) ~ n^2/2. - Thomas Ordowski, Oct 19 2014
Sum_{n>=1} 1/a(n) = 1 + (3/4) * Sum_{k>=1} H(2^k-1)/2^k = 2.3388865091..., where H(k) = A001008(k)/A002805(k) is the k-th harmonic number. - Amiram Eldar, Jan 24 2023
Extensions
More terms from Stefan Steinerberger, Apr 10 2006
Comments