cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A116970 a(n) = (3^n - 7)/2.

Original entry on oeis.org

1, 10, 37, 118, 361, 1090, 3277, 9838, 29521, 88570, 265717, 797158, 2391481, 7174450, 21523357, 64570078, 193710241, 581130730, 1743392197, 5230176598, 15690529801, 47071589410, 141214768237, 423644304718, 1270932914161
Offset: 2

Views

Author

N. J. A. Sloane, Apr 01 2006

Keywords

Comments

Number of moves to solve Type 1 Zig-Zag puzzle.
(3^(p+1) - 7)/2 = a(p+1) == 1 (mod p) since (3^(p-1) - 1)/2 = A003462(p-1) == 0 (mod p), for primes p > 7 (see comment by Alexander Adamchuck in A003462); in addition, a(4) == 1 (mod 3) and a(6) == 1 (mod 5). - Hartmut F. W. Hoft, Aug 22 2018

References

  • Richard I. Hess, Compendium of Over 7000 Wire Puzzles, privately printed, 1991.
  • Richard I. Hess, Analysis of Ring Puzzles, booklet distributed at 13th International Puzzle Party, Amsterdam, Aug 20 1993.

Crossrefs

Programs

Formula

a(n) = 3*a(n-1) + 7 with n > 2, a(2)=1. - Vincenzo Librandi, Aug 02 2010
a(2)=1, a(3)=10; for n > 3, a(n) = 4*a(n-1) - 3*a(n-2). - Harvey P. Dale, Jan 17 2013
G.f.: x^2*(1+6*x)/((1-3*x)*(1-x)). - Vincenzo Librandi, Mar 30 2015
From Hartmut F. W. Hoft, Aug 22 2018: (Start)
a(2) = 1; a(n) = a(n-1) + 3^(n-1) for n > 2. -
a(n) = A003462(n) - 3, n >= 2. (End)