A117081 a(n) = 36*n^2 - 810*n + 2753, producing the conjectured record number of 45 primes in a contiguous range of n for quadratic polynomials, i.e., abs(a(n)) is prime for 0 <= n < 44.
2753, 1979, 1277, 647, 89, -397, -811, -1153, -1423, -1621, -1747, -1801, -1783, -1693, -1531, -1297, -991, -613, -163, 359, 953, 1619, 2357, 3167, 4049, 5003, 6029, 7127, 8297, 9539, 10853, 12239, 13697, 15227, 16829, 18503, 20249, 22067, 23957, 25919, 27953, 30059, 32237, 34487, 36809, 39203, 41669
Offset: 0
References
- Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- François Dress and Michel Olivier, Polynômes prenant des valeurs premières, Experimental Mathematics, Volume 8, Issue 4 (1999), pages 319-338.
- Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles and Problems Connection.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
I:=[2753, 1979, 1277]; [n le 3 select I[n] else 3*Self(n-1)-3 *Self(n-2)+Self(n-3): n in [1..50]]; // Vincenzo Librandi, May 12 2012
-
Mathematica
f[n_] := If[Mod[n, 2] == 1, 36*n^2 - 810*n + 2753, 36*n^2 - 810*n + 2753] a = Table[f[n], {n, 0, 100}] CoefficientList[Series[(2753-6280*x+3599*x^2)/(1-x)^3,{x,0,50}],x] (* Vincenzo Librandi, May 12 2012 *) Table[36n^2-810n+2753,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{2753,1979,1277},50] (* Harvey P. Dale, Jun 20 2013 *)
-
PARI
{for(n=0, 46, print1(36*n^2-810*n+2753, ","))}
Formula
G.f.: (2753 - 6280*x + 3599*x^2)/(1-x)^3. - Colin Barker, May 10 2012
a(0)=2753, a(1)=1979, a(2)=1277, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Harvey P. Dale, Jun 20 2013
E.g.f.: exp(x)*(2753 - 774*x + 36*x^2). - Elmo R. Oliveira, Feb 09 2025
Extensions
Edited by N. J. A. Sloane, Apr 27 2007
Title extended by Hugo Pfoertner, Dec 13 2019
Comments