A050268
Primes of the form 36*k^2 - 810*k + 2753, listed in order of increasing parameter k >= 0.
Original entry on oeis.org
2753, 1979, 1277, 647, 89, 359, 953, 1619, 2357, 3167, 4049, 5003, 6029, 7127, 8297, 9539, 10853, 12239, 13697, 15227, 16829, 18503, 20249, 22067, 23957, 25919, 27953, 30059, 32237, 34487, 36809, 41669, 44207, 46817, 49499, 52253
Offset: 1
- Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004.
-
[a: n in [0..100] | IsPrime(a) where a is 36*n^2 - 810*n + 2753]; // Vincenzo Librandi, Dec 08 2011
-
t1:=[seq(36*n^2 - 810*n + 2753,n=0..100)]; t2:=[]; for i from 1 to nops(t1) do if isprime(t1[i]) then t2:=[op(t2),t1[i]]; fi; od: t2; # N. J. A. Sloane
-
Select[Table[36n^2-810n+2753,{n,0,2000}],PrimeQ] (* Vincenzo Librandi, Dec 08 2011 *)
-
select(isprime, vector(1000, n, 36*n^2-810*n+2753)) \\ Charles R Greathouse IV, Feb 14 2011
A050267
Primes or negative values of primes in the sequence b(n) = 47*n^2 - 1701*n + 10181, n >= 0.
Original entry on oeis.org
10181, 8527, 6967, 5501, 4129, 2851, 1667, 577, -419, -1321, -2129, -2843, -3463, -3989, -4421, -4759, -5003, -5153, -5209, -5171, -5039, -4813, -4493, -4079, -3571, -2969, -2273, -1483, -599, 379, 1451, 2617, 3877, 5231, 6679, 8221, 9857, 11587, 13411, 15329, 17341, 19447, 21647, 31387
Offset: 1
- R. K. Guy, Unsolved Problems in Number Theory, 3rd ed., Springer, 2004 (ISBN 0-387-20860-7); see Section A17, p. 59.
- Paulo Ribenboim, The Little Book of Bigger Primes, Second Edition, Springer-Verlag New York, 2004. See p. 147.
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- G. W. Fung and H. C. Williams, Quadratic polynomials which have a high density of prime values, Math. Comput. 55(191) (1990), 345-353.
- Carlos Rivera, Problem 12: Prime producing polynomials, The Prime Puzzles & Problems Connection.
- Jitender Singh, Prime numbers and factorization of polynomials, arXiv:2411.18366 [math.NT], 2024.
- Eric Weisstein's World of Mathematics, Prime-Generating Polynomial.
Cf.
A002383,
A005471,
A005846,
A007635,
A022464,
A027753,
A027755,
A027758,
A048059,
A050267,
A050268,
A116206,
A117081,
A267252.
-
lst={};Do[p=47*n^2-1701*n+10181;If[PrimeQ[p],AppendTo[lst,p]],{n,0,5!}];lst (* Vladimir Joseph Stephan Orlovsky, Jan 29 2009 *)
Select[Table[47n^2-1701n+10181,{n,0,50}],PrimeQ] (* Harvey P. Dale, Oct 03 2011 *)
-
[n | n <- apply(m->47*m^2-1701*m+10181, [0..100]), isprime(abs(n))] \\ Charles R Greathouse IV, Jun 18 2017
A115244
Indices of primes generated by Fung and Ruby's prime generating polynomial A050268.
Original entry on oeis.org
402, 299, 206, 118, 24, 78, 141, 191, 224, 257, 272, 279, 276, 264, 242, 211, 167, 112, 38, 72, 162, 256, 350, 448, 558, 670, 786, 913, 1042, 1181, 1319, 1462, 1620, 1777, 1942, 2119, 2289, 2473, 2664, 2851, 3051, 3250, 3458, 3684
Offset: 0
-
map(numtheory:-pi,select(isprime, [seq(abs(36*n^2 - 810* n + 2753), n=0..300)])); # Robert Israel, Mar 03 2016
-
Table[PrimePi[Abs[36*n^2 - 810*n + 2753]], {n, 0, 43}]
a := Select[Table[36 n^2 - 810 n + 2753, {n, 0, 200}], PrimeQ];
PrimePi[Abs[a]] (* G. C. Greubel, Feb 08 2016 *)
A268101
Smallest prime p such that some polynomial of the form a*x^2 - b*x + p generates distinct primes in absolute value for x = 1 to n, where 0 < a < p and 0 <= b < p.
Original entry on oeis.org
2, 3, 5, 5, 7, 7, 11, 11, 11, 11, 13, 13, 17, 17, 17, 17, 19, 19, 23, 23, 23, 23, 29, 29, 29, 29, 29, 29, 31, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 41, 647, 1277, 1979, 2753
Offset: 1
a(1) = 2 (a prime), x^2 + 2 gives a prime for x = 1.
a(2) = 3 (a prime), 2*x^2 + 3 gives distinct primes for x = 1 to 2.
a(4) = 5 (a prime), 2*x^2 + 5 gives distinct primes for x = 1 to 4.
a(6) = 7 (a prime), 4*x^2 + 7 gives distinct primes for x = 1 to 6.
a(10) = 11 (a prime), 2*x^2 + 11 gives distinct primes for x = 1 to 10.
a(12) = 13 (a prime), 6*x^2 + 13 gives distinct primes for x = 1 to 12.
a(16) = 17 (a prime), 6*x^2 + 17 gives distinct primes for x = 1 to 16.
a(18) = 19 (a prime), 10*x^2 + 19 gives distinct primes for x = 1 to 18.
a(22) = 23 (a prime), 3*x^2 - 3*x + 23 gives distinct primes for x = 1 to 22.
a(28) = 29 (a prime), 2*x^2 + 29 gives distinct primes for x = 1 to 28.
a(29) = 31 (a prime), 2*x^2 - 4*x + 31 gives distinct primes for x = 1 to 29.
a(40) = 41 (a prime), x^2 - x + 41 gives distinct primes for x = 1 to 40.
a(41) = 647 (a prime), abs(36*x^2 - 594*x + 647) gives distinct primes for x = 1 to 41.
a(42) = 1277 (a prime), abs(36*x^2 - 666*x + 1277) gives distinct primes for x = 1 to 42.
a(43) = 1979 (a prime), abs(36*x^2 - 738*x + 1979) gives distinct primes for x = 1 to 43.
a(44) = 2753 (a prime), abs(36*x^2 - 810*x + 2753) gives distinct primes for x = 1 to 44.
Cf.
A027688,
A027753,
A027690,
A027755,
A048058,
A048059,
A007635,
A007639,
A007637,
A007641,
A202018,
A005846,
A117081,
A050268,
A268109.
Showing 1-4 of 4 results.
Comments