A117189 Binomial transform of the tribonacci sequence A000073 (shifted left twice).
1, 2, 5, 14, 40, 114, 324, 920, 2612, 7416, 21056, 59784, 169744, 481952, 1368400, 3885280, 11031424, 31321376, 88930368, 252498816, 716916544, 2035531648, 5779458048, 16409538688, 46591385856, 132286304768, 375598753024, 1066432564736, 3027907856384
Offset: 0
Keywords
Examples
a(4) = 14 = 1*1 + 3*1 + 3*2 + 1*4; a(6) = 324 = 2*114 + 1*40 + 2*14 + 3*5 + 4*2 + 5*1. - _Bob Selcoe_, Jun 28 2014
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-4,2).
Programs
-
Mathematica
CoefficientList[Series[-(x - 1)^2/(-1 + 4*x - 4*x^2 + 2*x^3), {x, 0, 30}], x] (* Wesley Ivan Hurt, Jul 05 2014 *) LinearRecurrence[{4,-4,2},{1,2,5},40] (* Harvey P. Dale, Oct 10 2016 *)
Formula
a(n) = 4*a(n-1)-4*a(n-2)+2*a(n-3), n>2. - T. D. Noe, Nov 07 2006
O.g.f.: -(x-1)^2/(-1+4*x-4*x^2+2*x^3). - R. J. Mathar, Apr 02 2008
a(n) = 2*a(n-1) + Sum_{j=1..n-1} j*a(n-j-1), n>=1; with a(0) = 1. - Bob Selcoe, Jun 28 2014
Extensions
Corrected and extended by T. D. Noe, Nov 07 2006
Comments