cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A117401 Triangle T(n,k) = 2^(k*(n-k)), read by rows.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 8, 16, 8, 1, 1, 16, 64, 64, 16, 1, 1, 32, 256, 512, 256, 32, 1, 1, 64, 1024, 4096, 4096, 1024, 64, 1, 1, 128, 4096, 32768, 65536, 32768, 4096, 128, 1, 1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2006

Keywords

Comments

Matrix power T^m satisfies: [T^m](n,k) = [T^m](n-k,0)*T(n,k) for all m and so the triangle has an invariant character.

Examples

			A(x,y) = 1/(1-xy) + x/(1-2xy) + x^2/(1-4xy) + x^3/(1-8xy) + ...
Triangle begins:
  1;
  1,   1;
  1,   2,     1;
  1,   4,     4,      1;
  1,   8,    16,      8,       1;
  1,  16,    64,     64,      16,       1;
  1,  32,   256,    512,     256,      32,      1;
  1,  64,  1024,   4096,    4096,    1024,     64,     1;
  1, 128,  4096,  32768,   65536,   32768,   4096,   128,   1;
  1, 256, 16384, 262144, 1048576, 1048576, 262144, 16384, 256, 1;
		

Crossrefs

Cf. A117402 (row sums), A117403 (antidiagonal sums), A002416 (central terms).
Cf. this sequence (m=0), A118180 (m=1), A118185 (m=2), A118190 (m=3), A158116 (m=4), A176642 (m=6), A158117 (m=8), A176627 (m=10), A176639 (m=13), A156581 (m=15).

Programs

  • Magma
    A117401:= func< n, k, m | (m+2)^(k*(n-k)) >;
    [A117401(n, k, 0): k in [0..n], n in [0..12]]; // G. C. Greubel, Jun 28 2021
    
  • Mathematica
    Table[2^((n-k)k),{n,0,10},{k,0,n}]//Flatten (* Harvey P. Dale, Jan 09 2017 *)
  • PARI
    T(n,k)=if(n
    				
  • Sage
    def A117401(n, k, m): return (m+2)^(k*(n-k))
    flatten([[A117401(n, k, 0) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 28 2021

Formula

G.f.: A(x,y) = Sum_{n>=0} x^n/(1 - 2^n*x*y).
G.f. satisfies: A(x,y) = 1/(1 - x*y) + x*A(x,2*y).
Equals ConvOffsStoT transform of the 2^n series: (1, 2, 4, 8, ...); e.g., ConvOffs transform of (1, 2, 4, 8) = (1, 8, 16, 8, 1). - Gary W. Adamson, Apr 21 2008
T(n,k) = (1/n)*( 2^(n-k)*k*T(n-1,k-1) + 2^k*(n-k)*T(n-1,k) ), where T(i,j)=0 if j>i. - Tom Edgar, Feb 20 2014
Let E(x) = Sum_{n>=0} x^n/2^C(n,2). Then E(x)*E(y*x) = Sum_{n>=0} Sum_{k=0..n} T(n,k)*y^k*x^n/2^C(n,2). - Geoffrey Critzer, May 31 2020
T(n, k, m) = (m+2)^(k*(n-k)) with m = 0. - G. C. Greubel, Jun 28 2021

A349893 a(n) = Sum_{k=0..n} k^(k*(n-k)).

Original entry on oeis.org

1, 2, 3, 7, 46, 1052, 88603, 27121965, 37004504306, 198705527223758, 5595513387083114571, 686714367475480207331583, 468422339816915120237104999422, 1664212116512828935888786624225704856, 31295654819650678010096952493864470025103251
Offset: 0

Views

Author

Seiichi Manyama, Dec 04 2021

Keywords

Crossrefs

Programs

  • Mathematica
    Table[1 + Sum[k^(k*(n - k)), {k, 1, n}], {n, 0, 16}] (* Vaclav Kotesovec, Dec 05 2021 *)
  • PARI
    a(n) = sum(k=0, n, k^(k*(n-k)));
    
  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, x^k/(1-k^k*x)))

Formula

G.f.: Sum_{k>=0} x^k/(1 - k^k * x).
log(a(n)) ~ n^2*log(n)/4 * (1 - log(2)/log(n) + 1/(4*log(n)^2)). - Vaclav Kotesovec, Dec 05 2021

A117403 a(n) = Sum_{k=0..floor(n/2)} 2^((n-2*k)*k) for n>=0.

Original entry on oeis.org

1, 1, 2, 3, 6, 13, 34, 105, 386, 1681, 8706, 53793, 395266, 3442753, 35659778, 440672385, 6476038146, 112812130561, 2336999211010, 57759810847233, 1697654543745026, 59146046307566593, 2450521284684021762
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2006

Keywords

Comments

Equals the antidiagonal sums of triangle A117401.

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 3*x^3 + 6*x^4 + 13*x^5 + 34*x^6 + 105*x^7 + ...
where
A(x) = 1/(1-x^2) + x/(1-2*x^2) + x^2/(1-4*x^2) + x^3/(1-8*x^2) + x^4/(1-16*x^2) + ...
		

Crossrefs

Cf. A117401 (triangle), A117402 (row sums).

Programs

  • Magma
    [(&+[2^(k*(n-2*k)) : k in [0..Floor(n/2)]]): n in [0..30]]; // G. C. Greubel, Jun 28 2021
    
  • Mathematica
    Table[Sum[2^(k*(n-2*k)), {k,0,Floor[n/2]}], {n,0,30}] (* G. C. Greubel, Jun 28 2021 *)
  • PARI
    a(n) = sum(k=0,n\2,2^((n-2*k)*k))
    
  • PARI
    {a(n) = polcoeff(sum(m=0,n,x^m/(1-2^m*x^2 +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • Sage
    [sum(2^(k*(n-2*k)) for k in (0..n//2)) for n in (0..30)] # G. C. Greubel, Jun 28 2021

Formula

G.f.: A(x) = Sum_{n>=0} x^n / (1 - 2^n*x^2).
a(2*n) = Sum_{k=0..n} 4^((n-k)*k).
a(2*n+1) = Sum_{k=0..n} 2^k * 4^((n-k)*k).
G.f.: 1/(1-x^2) - x/(Q(0) +x-x^3), where Q(k) = x^2*(2+x)*2^k -1-x - x*(2*x^2*2^k -1)^2/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Nov 11 2013

Extensions

Name changed by Paul D. Hanna, Nov 11 2013

A360704 Expansion of Sum_{k>=0} (x * (1 + 2^k * x))^k.

Original entry on oeis.org

1, 1, 3, 9, 41, 257, 2209, 27009, 455553, 10831873, 360452609, 16786663425, 1102243190785, 101146710556673, 13109796072955905, 2379217548538511361, 609386444958743363585, 219178211386515281412097, 111098724276069341895720961, 79284929294467154275606200321
Offset: 0

Views

Author

Seiichi Manyama, Feb 17 2023

Keywords

Crossrefs

Programs

  • PARI
    my(N=20, x='x+O('x^N)); Vec(sum(k=0, N, (x*(1+2^k*x))^k))
    
  • PARI
    a(n) = sum(k=0, n\2, 2^(k*(n-k))*binomial(n-k, k));

Formula

a(n) = Sum_{k=0..floor(n/2)} 2^(k*(n-k)) * binomial(n-k,k).

A337161 Square array read by antidiagonals: T(n,k) is the number of simple labeled graphs G with vertex set V(G) = {v_1,...,v_n} along with a (coloring) function C:V(G) ->[k] such that v_i adjacent to v_j implies C(v_i) != C(v_j) and i=0, k>=0.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 3, 4, 1, 0, 1, 4, 9, 10, 1, 0, 1, 5, 16, 35, 34, 1, 0, 1, 6, 25, 84, 195, 162, 1, 0, 1, 7, 36, 165, 644, 1635, 1090, 1, 0, 1, 8, 49, 286, 1605, 7620, 21187, 10370, 1, 0, 1, 9, 64, 455, 3366, 24389, 143748, 430467, 139522, 1, 0, 1, 10, 81, 680, 6279, 62310, 599685, 4412164, 13812483, 2654722, 1, 0, 1, 11, 100, 969, 10760, 136871, 1882054, 24413445, 223233540, 702219779, 71435266, 1, 0
Offset: 0

Views

Author

Geoffrey Critzer, Jan 28 2021

Keywords

Examples

			  1, 1,    1,     1,      1,      1,       1, ...
  0, 1,    2,     3,      4,      5,       6, ...
  0, 1,    4,     9,     16,     25,      36, ...
  0, 1,   10,    35,     84,    165,     286, ...
  0, 1,   34,   195,    644,   1605,    3366, ...
  0, 1,  162,  1635,   7620,  24389,   62310, ...
  0, 1, 1090, 21187, 143748, 599685, 1882054, ...
		

References

  • R. P. Stanley, Enumerative Combinatorics, Vol I, Second Edition, Section 3.18.

Crossrefs

Cf. A322280, A117402 (column k=2).

Programs

  • Mathematica
    nn = 6; e[x_] := Sum[x^n/(2^Binomial[n, 2]), {n, 0, nn}];
    Table[Table[2^Binomial[n, 2], {n, 0, nn}] PadRight[CoefficientList[Series[e[x]^k, {x, 0, nn}], x], nn + 1], {k, 0, nn}] // Transpose // Grid

Formula

Let e(x) = Sum_{n>=0} x^n/2^binomial(n,2). Then e(x)^k = Sum_{n>=0} Z_n(k)*x^n/2^biomial(n,2) and T(n,k) = Z_n(k). Z_n(k) is the zeta polynomial of the class of posets described in A117402.

A341957 E.g.f. A(x) satisfies: Sum_{n>=0} A(x)^n * exp(2^n*A(x)) / n! = Sum_{n>=0} x^n/(1 - 2^n*x).

Original entry on oeis.org

1, 1, 8, 144, 4554, 230940, 18177900, 2196712980, 406693854000, 115319921466960, 50017977456121080, 33099984846144881280, 33309128229289401091680, 50790831819884758635873840, 116936359809482874588941613600, 405126119455062475269210516705600
Offset: 1

Views

Author

Paul D. Hanna, Mar 09 2021

Keywords

Examples

			E.g.f.: A(x) = x + x^2/2! + 8*x^3/3! + 144*x^4/4! + 4554*x^5/5! + 230940*x^6/6! + 18177900*x^7/7! + 2196712980*x^8/8! + 406693854000*x^9/9! + 115319921466960*x^10/10! + ...
such that
Sum_{n>=0} A(x)^n * exp(2^n*A(x)) / n! = exp(A(x)) + A(x)*exp(2*A(x)) + A(x)^2*exp(2^2*A(x))/2! + A(x)^3*exp(2^3*A(x))/3! + A(x)^4*exp(2^4*A(x))/4! +...
equals the sum
Sum_{n>=0} x^n/(1 - 2^n*x) = 1 + 2*x + 4*x^2 + 10*x^3 + 34*x^4 + 162*x^5 + 1090*x^6 + 10370*x^7 + 139522*x^8 + ... + A117402(n)*x^n + ...
RELATED SERIES.
exp(A(x)) = 1 + x + 2*x^2/2! + 12*x^3/3! + 186*x^4/4! + 5460*x^5/5! + 263940*x^6/6! + 20053740*x^7/7! + 2359326480*x^8/8! + 428122913400*x^9/9! + ...
		

Crossrefs

Cf. A117402.

Programs

  • PARI
    {a(n) = my(L=[0,1]); for(i=1,n, L=concat(L,0);
    L[#L] = polcoeff( sum(n=0,#L, x^n/(1 - 2^n*x +x*O(x^#L))) - sum(n=0,#L, Ser(L)^n/n! * exp(2^n*Ser(L)) ) ,#L-1)/2;); n!*L[n+1]}
    for(n=1,20,print1(a(n),", "))
Showing 1-6 of 6 results.