cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A085548 Decimal expansion of the prime zeta function at 2: Sum_{p prime} 1/p^2.

Original entry on oeis.org

4, 5, 2, 2, 4, 7, 4, 2, 0, 0, 4, 1, 0, 6, 5, 4, 9, 8, 5, 0, 6, 5, 4, 3, 3, 6, 4, 8, 3, 2, 2, 4, 7, 9, 3, 4, 1, 7, 3, 2, 3, 1, 3, 4, 3, 2, 3, 9, 8, 9, 2, 4, 2, 1, 7, 3, 6, 4, 1, 8, 9, 3, 0, 3, 5, 1, 1, 6, 5, 0, 2, 7, 3, 6, 3, 9, 1, 0, 8, 7, 4, 4, 4, 8, 9, 5, 7, 5, 4, 4, 3, 5, 4, 9, 0, 6, 8, 5, 8, 2, 2, 2, 8, 0, 6
Offset: 0

Views

Author

Cino Hilliard, Jul 03 2003

Keywords

Comments

Mathar's Table 1 (cited below) lists expansions of the prime zeta function at integers s in 10..39. - Jason Kimberley, Jan 05 2017

Examples

			0.4522474200410654985065... = 1/2^2 + 1/3^2 + 1/5^2 +1/7^2 + 1/11^2 + 1/13^2 + ...
		

References

  • Henri Cohen, Number Theory, Volume II: Analytic and Modern Tools, GTM Vol. 240, Springer, 2007; see pp. 208-209.
  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, pp. 94-98.

Crossrefs

Decimal expansion of the prime zeta function: this sequence (at 2), A085541 (at 3), A085964 (at 4) to A085969 (at 9).
Cf. A136271 (derivative), A117543 (semiprimes), A222056, A209329, A124012.

Programs

  • Magma
    R := RealField(106);
    PrimeZeta := func;
    Reverse(IntegerToSequence(Floor(PrimeZeta(2,173)*10^105)));
    // Jason Kimberley, Dec 30 2016
  • Mathematica
    RealDigits[PrimeZetaP[2], 10, 105][[1]]  (* Jean-François Alcover, Jun 24 2011, updated May 06 2021 *)
  • PARI
    recip2(n) = { v=0; p=1; forprime(y=2,n, v=v+1./y^2; ); print(v) }
    
  • PARI
    eps()=my(p=default(realprecision)); precision(2.>>(32*ceil(p*38539962/371253907)),9)
    lm=lambertw(log(4)/eps())\log(4);
    sum(k=1,lm, moebius(k)/k*log(abs(zeta(2*k)))) \\ Charles R Greathouse IV, Jul 19 2013
    
  • PARI
    sumeulerrat(1/p,2) \\ Hugo Pfoertner, Feb 03 2020
    

Formula

P(2) = Sum_{p prime} 1/p^2 = Sum_{n>=1} mobius(n)*log(zeta(2*n))/n. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Equals A085991 + A086032 + 1/4. - R. J. Mathar, Jul 22 2010
Equals Sum_{k>=1} 1/A001248(k). - Amiram Eldar, Jul 27 2020
Equals Sum_{k>=2} pi(k)*(2*k+1)/(k^2*(k+1)^2), where pi(k) = A000720(k) (Shamos, 2011, p. 9). - Amiram Eldar, Mar 12 2024

Extensions

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Jul 06 2003
Offset corrected by R. J. Mathar, Feb 05 2009

A370093 Decimal expansion of Lichtman constant f(N*(2)).

Original entry on oeis.org

8, 9, 0, 9, 2, 5, 4, 7, 9, 4, 7, 6, 3, 1, 8, 3, 3, 2, 1, 3, 7, 2, 6, 2, 6, 2, 1, 9, 9, 5, 9, 8, 8, 2, 9, 3, 8, 9, 7, 8, 1, 8, 1, 3, 8, 1, 6, 5, 2, 7, 6, 3, 8, 9, 8, 3, 2, 9, 0, 7, 5, 6, 6, 9, 9, 8, 9, 1, 3, 4, 4, 1, 0, 6, 1, 4, 5, 0, 5, 2, 0, 7, 3, 6, 6, 4, 9, 7, 3, 3, 5, 9, 2, 7, 6, 2, 3, 2, 7, 5, 0, 3, 3, 3, 8, 3
Offset: 0

Views

Author

Artur Jasinski, Feb 09 2024

Keywords

Comments

Definition:
f(N*(k)) = Integral_{s>=1} P_k*(s), where P_k*(s) = Sum_{n>1 and (big) Omega(n)=k} mu(n)^2/n^s, where mu is Möbius (or Moebius) Mu function see A008683, and (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
Lichtman constant f(N*(1)) see A137245.
Lichtman constant f(N*(2)) this sequence.
Lichtman constant f(N*(3)) see A370112.
Lichtman constant f(N*(4)) see A370113.
Limit_{k->oo} f(N*(k)) = 6/Pi^2 = 0.607927101854... see A059956.
Value computed and communicated by Bill Allombert.

Examples

			0.890925479476318332...
		

Crossrefs

Programs

  • PARI
    pz(x)= sum(n=1,max(2,bitprecision(x)/x),my(a=moebius(n));if(a!=0,a*log(zeta(n*x))/n));
    Lichtman(n)=intnum(s=1,[oo,log(2)],exp(-sum(i=1,n,pz(i*s)*x^i/i)+O(x^(n+1)))-1)
    Lichtman(20)
    \\ Bill Allombert, Feb 14 2014 [via Artur Jasinski]

A152447 Decimal expansion of the sum_q 1/(q*(q-1)) over the semiprimes q = A001358.

Original entry on oeis.org

1, 7, 1, 0, 5, 1, 8, 9, 2, 9, 7, 9, 9, 9, 6, 6, 3, 6, 6, 2, 2, 2, 0, 2, 5, 6, 4, 3, 7, 2, 3, 7, 4, 2, 1, 3, 9, 9, 1, 2, 4, 6, 6, 1, 2, 0, 3, 5, 5, 0, 0, 5, 9, 7, 4, 9, 1, 0, 7, 9, 9, 7, 0, 7, 0, 0, 4, 6, 9, 9, 2, 9, 7, 2, 8, 4, 8, 1, 2, 7
Offset: 0

Views

Author

R. J. Mathar, Dec 04 2008

Keywords

Comments

The semiprime analog of A136141. To obtain the (smaller) sum over the squarefree semiprimes A006881, subtract the prime zeta functions of 4 ( A085964 ), 6, 8 etc. from this constant here. The first term in the representation as the geometric series in powers 1/q^s is in A117543 .

Formula

Equals 0.17105189297999663662220256437237421399124661203550059749107997... = 1/(4*3)+1/(6*5)+1/(9*8)+1/(10*9)+...

A372765 Decimal expansion of Lichtman constant f(N(2)).

Original entry on oeis.org

1, 1, 4, 4, 8, 1, 6, 5, 7, 3, 4, 0, 5, 9, 1, 7, 9, 9, 1, 5, 2, 4, 4, 5, 0, 1, 7, 3, 8, 9, 3, 3, 4, 1, 0, 7, 9, 1, 3, 1, 3, 0, 4, 9, 7, 4, 0, 1, 7, 4, 3, 6, 7, 3, 9, 1, 1, 9, 8, 9, 7, 6, 7, 3, 1, 7, 3, 0, 4, 9, 8, 7, 5, 5, 6, 8, 3, 2, 1, 1, 7, 6, 4, 9, 1, 8, 8, 2, 0, 6, 7, 5, 1, 7, 2, 3, 8, 7, 8, 8, 0, 7, 1, 1, 6
Offset: 1

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

Definition:
f(N(k)) = Sum_{n>1 and (big) Omega(n)=k} 1/(n*log(n)), where (big) Omega is number of prime divisors of n counted with multiplicity see A001222.
f(N(k)) = Integral_{s>=1} P_k(s), where P_k(s) = Sum_{n>1 and (big) Omega(n)=k} 1/n^s.
Lichtman constant f(N(1)) see A137245.
Lichtman constant f(N(2)) this sequence.
Lichtman constant f(N(3)) see A372827.
Lichtman constant f(N(4)) see A372828.
Minimal value of f(N(k)) occurs for k=6 f(N(6)) = 0.9887534530145...
For k>=6, 1 > f(N(k+1)) > f(N(k)).
When k -> oo then f(N(k)) -> 1.
Value computed and communicated by Bill Allombert.

Examples

			1.1448165734059179915...
		

Crossrefs

Programs

  • PARI
    pz(x)= sum(n=1, max(2, bitprecision(x)/x), my(a=moebius(n)); if(a!=0, a*log(zeta(n*x))/n));
    Lichtman(n)=intnum(s=1, [oo, log(2)], exp(sum(i=1, n, pz(i*s)*x^i/i)+O(x^(n+1)))-1)
    Lichtman(20)
    \\ Bill Allombert, May 14 2024 [via Artur Jasinski]

A131653 Decimal expansion of the sum of the reciprocals of squared 3-almost primes.

Original entry on oeis.org

0, 3, 8, 5, 1, 6, 1, 9, 2, 9, 8, 2, 6, 9, 4, 6, 4, 0, 9, 1, 2, 8, 3, 7, 9, 2, 2, 6, 2, 8, 0, 6, 0, 3, 9, 5, 4, 3, 8, 9, 0, 0, 1, 6, 7, 4, 7, 8, 3, 8, 1, 5, 7, 1, 9, 3, 7, 1, 9, 1, 5, 5, 8, 9, 2, 2, 3, 7, 5, 5, 3, 7, 8, 3, 4, 5, 9, 1, 6, 6, 1, 3, 9, 3, 0, 4, 7, 4, 1, 4, 7, 6, 2, 0, 4, 9, 4, 7, 1, 5, 0, 8, 4, 4, 4
Offset: 0

Views

Author

R. J. Mathar, Sep 10 2007, Mar 07 2008

Keywords

Comments

zeta(2) = A013661 is 1 plus a sum over inverse squares of k-almost primes, k=1 to infinity, where A085548 represents k=1, A117543 represents k=2 and this constant here represents k=3.

Examples

			0.038516192982694640912837922628060395438900167478381571937...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[PrimeZetaP[2]^3/6 + PrimeZetaP[6]/3 + PrimeZetaP[2]*PrimeZetaP[4]/2, 10, 120, -1][[1]] (* Amiram Eldar, Jun 25 2023 *)

Formula

Equals A085548^3 / 6 + A085966 / 3 + A085548 * A085964 / 2.
Equals Sum_{i>=1} 1/A000290(A014612(i)).

Extensions

a(104) corrected by Amiram Eldar, Jun 25 2023

A372827 Decimal expansion of Lichtman constant f(N(3)).

Original entry on oeis.org

1, 0, 3, 0, 8, 3, 5, 1, 0, 1, 7, 9, 3, 2, 1, 7, 5, 7, 1, 9, 5, 5, 6, 8, 8, 8, 9, 9, 7, 9, 6, 1, 0, 0, 3, 9, 0, 9, 2, 5, 9, 3, 6, 0, 7, 2, 9, 9, 1, 1, 5, 6, 6, 5, 9, 5, 3, 8, 0, 0, 5, 4, 6, 1, 0, 8, 6, 3, 8, 8, 4, 8, 1, 5, 4, 4, 2, 9, 7, 4, 9, 6, 8, 6, 8, 7, 9, 1, 6, 5, 9, 7, 5, 7, 5, 4, 7, 7, 6, 0, 2, 2, 3, 1, 4
Offset: 1

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

For definition and links see A372765.

Examples

			1.0308351017932175719...
		

Crossrefs

A372828 Decimal expansion of Lichtman constant f(N(4)).

Original entry on oeis.org

9, 9, 7, 3, 4, 2, 1, 4, 8, 5, 9, 5, 2, 5, 2, 3, 5, 9, 7, 7, 7, 5, 9, 3, 5, 9, 9, 5, 4, 8, 7, 8, 1, 9, 7, 9, 2, 7, 1, 1, 9, 2, 4, 1, 3, 5, 5, 3, 8, 2, 2, 1, 7, 2, 7, 1, 8, 8, 9, 8, 2, 9, 2, 4, 7, 7, 0, 8, 4, 2, 3, 4, 7, 6, 7, 5, 2, 7, 6, 7, 8, 4, 6, 0, 4, 4, 9, 8, 1, 5, 1, 7, 6, 9, 9, 0, 6, 1, 6, 6, 5, 8, 7, 7, 3
Offset: 0

Views

Author

Artur Jasinski, May 14 2024

Keywords

Comments

For definition and links see A372765.

Examples

			0.997342148595252359...
		

Crossrefs

A282468 Decimal expansion of the zeta function at 2 of every second prime number.

Original entry on oeis.org

1, 4, 4, 7, 1, 5, 5, 8, 6, 6, 8, 8, 7
Offset: 0

Views

Author

Terry D. Grant, Apr 14 2017

Keywords

Comments

From Husnain Raza, Aug 30 2023: (Start)
Note that since p_n > n*log(n), we can place a bound on the tail of the sum:
Sum_{n >= N} (prime(2n))^(-2) <= Sum_{n >= N} (2*n*log(2n))^(-2) <= Integral_{x=N..oo} (2*x*log(2x))^(-2) dx.
Taking the sum over all primes < 10^12, we see that the constant lies between 0.14471558668870 and 0.14471558668873. (End)

Examples

			1/3^2 + 1/7^2 + 1/13^2 + 1/19^2 + 1/29^2 + ... = 0.14471558...
		

Crossrefs

Zeta functions at 2: A085548 (for primes), A275647 (for nonprimes), A013661 (for natural numbers), A117543 (for semiprimes), A131653 (for triprimes), A222171 (for even numbers), A111003 (for odd numbers).

Programs

  • PARI
    sum(n=1, 2500000, 1./prime(2*n)^2)
    
  • PARI
    \\ see Raza link

Formula

Equals Sum_{n>=1} 1/A031215(n)^2 = Sum_{n>=1} 1/prime(2n)^2.

Extensions

a(8)-a(12) from Husnain Raza, Aug 31 2023

A154943 Decimal expansion of the negated value of the sum_q [log(1-1/q)+1/q] over the semiprimes q.

Original entry on oeis.org

0, 7, 9, 8, 4, 8, 0, 4, 0, 3, 0, 6, 2, 3, 2, 6, 9, 1, 8, 9, 7, 4, 0, 2, 2, 5, 4, 7, 0, 5, 1, 3, 6, 6, 8, 2, 2, 7, 2, 3, 1, 1, 9, 0, 2, 0, 8, 4, 9, 0, 8, 6, 0, 3
Offset: 0

Views

Author

R. J. Mathar, Jan 17 2009

Keywords

Comments

The semiprime analog of A143524. Taylor expansion of the logarithm shows that the value is sum_{s=2,3,..,infinity} P_2(s)/s, where P_2(s) are the semiprime zeta functions in Table 3 of the preprint arXiv:0803.0900. P_2(2)=A117543 and P_2(3)=0.023806..., P_2(4)=0.004994... etc.

Examples

			Equals 0.079848040306232691897402254...
		

Formula

Equals the negative of Sum_{i>=1} ( log(1-1/A001358(i)) +1/A001358(i)).
Showing 1-9 of 9 results.