A048436
Take the first n numbers written in base 4, concatenate them, then convert from base 4 to base 10.
Original entry on oeis.org
1, 6, 27, 436, 6981, 111702, 1787239, 28595832, 457533321, 7320533146, 117128530347, 1874056485564, 29984903769037, 479758460304606, 7676135364873711, 491272663351917520, 31441450454522721297, 2012252829089454163026, 128784181061725066433683
Offset: 1
a(7): (1)(2)(3)(10)(11)(12)(13) = 12310111213_4 = 1787239.
Concatenation of first n numbers in other bases: 2:
A047778, 3:
A048435, 4: this sequence, 5:
A048437, 6:
A048438, 7:
A048439, 8:
A048440, 9:
A048441, 10:
A007908, 11:
A048442, 12:
A048443, 13:
A048444, 14:
A048445, 15:
A048446, 16:
A048447. -
Dylan Hamilton, Aug 11 2010
-
[n eq 1 select 1 else Self(n-1) * 4^(1+Ilog(4,n)) + n: n in [1..20]]; // Jason Kimberley, Nov 27 2012
-
a[n_]:= FromDigits[Flatten@IntegerDigits[Range@n, 4], 4]; Array[a, 20] (* Vincenzo Librandi, Dec 30 2012 *)
-
from functools import reduce
def A048436(n): return reduce(lambda i,j:(i<<(bool((m:=j.bit_length())&1)<<1)+(m&-2))+j,range(n+1)) # Chai Wah Wu, Feb 26 2023
A058935
Concatenation of first n binary numbers.
Original entry on oeis.org
0, 1, 110, 11011, 11011100, 11011100101, 11011100101110, 11011100101110111, 110111001011101111000, 1101110010111011110001001, 11011100101110111100010011010, 110111001011101111000100110101011, 1101110010111011110001001101010111100
Offset: 0
Cf.
A047778 for this converted to decimal,
A001855 (offset) for number of digits.
-
FromDigits /@ Flatten /@ Rest[FoldList[Append, {}, IntegerDigits[Range[10], 2]]] (* Eric W. Weisstein, Nov 04 2015 *)
-
from itertools import count, islice
def agen(s=""): yield from (int(s:=s+bin(n)[2:]) for n in count(0))
print(list(islice(agen(), 13))) # Michael S. Branicky, Feb 17 2023
-
from functools import reduce
def A058935(n): return int(bin(reduce(lambda i,j:(i<Chai Wah Wu, Feb 26 2023
A362118
a(n) = (10^(n*(n+1)/2)-1)/9.
Original entry on oeis.org
1, 111, 111111, 1111111111, 111111111111111, 111111111111111111111, 1111111111111111111111111111, 111111111111111111111111111111111111, 111111111111111111111111111111111111111111111, 1111111111111111111111111111111111111111111111111111111, 111111111111111111111111111111111111111111111111111111111111111111
Offset: 1
a(3) = 111111 because 3(3+1)/2 = 6, and 111111 has 6 ones.
A362117
Concatenation of first n numbers in base 5.
Original entry on oeis.org
1, 12, 123, 1234, 123410, 12341011, 1234101112, 123410111213, 12341011121314, 1234101112131420, 123410111213142021, 12341011121314202122, 1234101112131420212223, 123410111213142021222324, 12341011121314202122232430, 1234101112131420212223243031
Offset: 1
-
A362117[n_]:=FromDigits[Flatten[IntegerDigits[Range[n],5]]];Array[A362117,20] (* Paolo Xausa, Nov 27 2023 *)
-
from gmpy2 import digits
def A362117(n): return int(''.join(digits(n,5) for n in range(1,n+1))) # Chai Wah Wu, Apr 19 2023
A362119
Concatenate the base-6 strings for 1,2,...,n.
Original entry on oeis.org
1, 12, 123, 1234, 12345, 1234510, 123451011, 12345101112, 1234510111213, 123451011121314, 12345101112131415, 1234510111213141520, 123451011121314152021, 12345101112131415202122, 1234510111213141520212223, 123451011121314152021222324, 12345101112131415202122232425
Offset: 1
-
A362119[n_]:=FromDigits[Flatten[IntegerDigits[Range[n],6]]];Array[A362119,20] (* Paolo Xausa, Nov 27 2023 *)
-
from sympy.ntheory import digits
from itertools import count, islice
def agen(s="", base=6): yield from (int(s:=s+"".join(map(str, digits(n, base)[1:]))) for n in count(1))
print(list(islice(agen(), 20)))
A362429
Smallest k such that the concatenation of the numbers 123...k in base n is prime when interpreted as a decimal number, or -1 if no such prime exists.
Original entry on oeis.org
-1, 231, 7315, 3241, 6, 12891, 22, 227, 127
Offset: 1
a(5) is 6: 12341011 (concatenate 1 though 6 in base 5) is a prime when interpreted as a decimal number.
-
from gmpy2 import is_prime
from sympy.ntheory import digits
from itertools import count, islice
def c(base, s=""):
if base == 1: yield from (s:=s+"1"*n for n in count(1))
else:
yield from (s:=s+"".join(map(str, digits(n, base)[1:])) for n in count(1))
def a(n):
if n == 1: return -1
return next(k for k, t in enumerate(c(n), 1) if is_prime(int(t)))
Showing 1-6 of 6 results.
Comments