A173343 a(n+4) = a(n+3) - 2*a(n+2) - a(n+1) - a(n).
1, 2, 0, -5, -8, 0, 21, 34, 0, -89, -144, 0, 377, 610, 0, -1597, -2584, 0, 6765, 10946, 0, -28657, -46368, 0, 121393, 196418, 0, -514229, -832040, 0, 2178309, 3524578, 0, -9227465, -14930352, 0, 39088169, 63245986, 0, -165580141, -267914296, 0
Offset: 0
Links
- C. Dement, Online Floretion Multiplier [broken link]
- R. J. Mathar, Structure of the Floretion Group
- R. Munafo, Sequences Related to Floretions
- Index entries for linear recurrences with constant coefficients, signature (1,-2,-1,-1).
Programs
-
Mathematica
LinearRecurrence[{1,-2,-1,-1},{1,2,0,-5},50] (* Harvey P. Dale, Jul 17 2018 *)
Formula
G.f.: (x+1)/(x^4+x^3+2*x^2-x+1).
a(n) = b(n)+b(n-1) where b(3n) = b(3n+1) = -b(3n+2) = (-1)^n*A001076(n+1). [From R. J. Mathar, Apr 01 2010]
Comments