cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A117662 a(n) = n*(n-1)*(n-2)*(n+3)/12.

Original entry on oeis.org

0, 0, 0, 3, 14, 40, 90, 175, 308, 504, 780, 1155, 1650, 2288, 3094, 4095, 5320, 6800, 8568, 10659, 13110, 15960, 19250, 23023, 27324, 32200, 37700, 43875, 50778, 58464, 66990, 76415, 86800, 98208, 110704, 124355, 139230, 155400, 172938, 191919
Offset: 0

Views

Author

Roger L. Bagula, Apr 11 2006

Keywords

Comments

Also, the number of external intersections of the diagonals of a general n-gon = (A176145) - (A000332). - Michel Lagneau, Apr 21 2010

Crossrefs

Essentially the same as A050297 and A005701.

Programs

  • Magma
    [n*(n-1)*(n-2)*(n+3)/12: n in [0..50]]; // Vincenzo Librandi, Oct 10 2013
  • Maple
    seq(n*(n-1)*(n-2)*(n+3)/12, n=0..40); # Wesley Ivan Hurt, Oct 10 2013
  • Mathematica
    Table[n(n-1)(n-2)(n+3)/12, {n,0,100}] (* Wesley Ivan Hurt, Sep 26 2013 *)
    CoefficientList[Series[x^3 (3 - x)/(1 - x)^5, {x, 0, 80}], x] (* Vincenzo Librandi, Oct 10 2013 *)
    LinearRecurrence[{5,-10,10,-5,1},{0,0,0,3,14},80] (* Harvey P. Dale, Jan 01 2025 *)

Formula

G.f.: x^3*(3-x)/(1-x)^5. - Colin Barker, Jan 31 2012
From Amiram Eldar, May 17 2025: (Start)
Sum_{n>=3} 1/a(n) = 137/300.
Sum_{n>=3} (-1)^(n+1)/a(n) = 32*log(2)/5 - 1247/300. (End)

Extensions

Edited by N. J. A. Sloane, Apr 23 2006