cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A191465 a(n) = 9^n - 2^n.

Original entry on oeis.org

0, 7, 77, 721, 6545, 59017, 531377, 4782841, 43046465, 387419977, 3486783377, 31381057561, 282429532385, 2541865820137, 22876792438577, 205891132061881, 1853020188786305, 16677181699535497, 150094635296736977, 1350851717672467801, 12157665459055880225, 109418989131510262057
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Comments

a(n) is the number of words of length n over the alphabet {1,2,...,9} where at least one letter >= 3 appears. - Joerg Arndt, Jan 18 2024

Crossrefs

Programs

  • Mathematica
    Table[9^n-2^n,{n,0,20}] (* Harvey P. Dale, Apr 16 2014 *)
  • PARI
    a(n)=9^n-1<Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 11*a(n-1) - 18*a(n-2).
G.f.: 7*x/((1-2*x)*(1-9*x)). - Vincenzo Librandi, Oct 04 2014
a(n) = 7*A016133(n-1). - R. J. Mathar, Mar 10 2022
E.g.f.: 2*exp(11*x/2)*sinh(7*x/2). - Elmo R. Oliveira, Mar 31 2025

A248337 a(n) = 6^n - 4^n.

Original entry on oeis.org

0, 2, 20, 152, 1040, 6752, 42560, 263552, 1614080, 9815552, 59417600, 358602752, 2160005120, 12993585152, 78095728640, 469111242752, 2816814940160, 16909479575552, 101491237191680, 609084862103552, 3655058928435200, 21932552593866752, 131604111656222720, 789659854309425152, 4738099863344906240, 28429162130022858752
Offset: 0

Views

Author

Vincenzo Librandi, Oct 05 2014

Keywords

Crossrefs

Cf. sequences of the form k^n - 4^n: -A000302 (k=0), -A024036 (k=1), -A020522 (k=2), -A005061 (k=3), A005060 (k=5), this sequence (k=6), A190542 (k=7), A059409 (k=8), A118004 (k=9), A248338 (k=10), A139742 (k=11), 8*A016159 (k=12).

Programs

  • Magma
    [6^n-4^n: n in [0..30]];
    
  • Mathematica
    Table[6^n - 4^n, {n,0,30}]
    CoefficientList[Series[(2 x)/((1-4 x)(1-6 x)), {x, 0, 30}], x]
    LinearRecurrence[{10,-24},{0,2},30] (* Harvey P. Dale, Aug 18 2024 *)
  • PARI
    vector(20,n,6^(n-1)-4^(n-1)) \\ Derek Orr, Oct 05 2014
    
  • SageMath
    A248337=BinaryRecurrenceSequence(10,-24,0,2)
    [A248337(n) for n in range(31)] # G. C. Greubel, Nov 11 2024

Formula

G.f.: 2*x/((1-4*x)*(1-6*x)).
a(n) = 10*a(n-1) - 24*a(n-2).
a(n) = 2^n*(3^n-2^n) = A000079(n) * A001047(n) = A000400(n) - A000302(n).
a(n) = 2*A081199(n). - Bruno Berselli, Oct 05 2014
E.g.f.: 2*exp(5*x)*sinh(x). - G. C. Greubel, Nov 11 2024

Extensions

More terms added by G. C. Greubel, Nov 11 2024

A191466 a(n) = 9^n - 5^n.

Original entry on oeis.org

0, 4, 56, 604, 5936, 55924, 515816, 4704844, 42656096, 385467364, 3477018776, 31332231484, 282185395856, 2540645125204, 22870688939336, 205860614516524, 1852867600961216, 16676418760213444, 150090820599733496, 1350832644186663964, 12157570091625288176, 109418512294354156084
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n-5^n: n in [0..20]];
    
  • Mathematica
    Table[9^n - 5^n, {n, 0, 25}] (* or *) CoefficientList[Series[4 x/((1 - 5 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
    LinearRecurrence[{14,-45},{0,4},20] (* Harvey P. Dale, Jun 26 2019 *)
  • PARI
    a(n)=9^n-5^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 14*a(n-1) - 45*a(n-2).
From Vincenzo Librandi, Oct 05 2014: (Start)
G.f.: 4*x/((1-5*x)*(1-9*x)).
a(n+1) = 4*A016163(n). (End)
E.g.f.: 2*exp(14*x/2)*sinh(2*x). - Elmo R. Oliveira, Mar 31 2025

A191467 9^n - 7^n.

Original entry on oeis.org

0, 2, 32, 386, 4160, 42242, 413792, 3959426, 37281920, 347066882, 3204309152, 29403732866, 268588249280, 2444976817922, 22198569382112, 201143570584706, 1819787258282240, 16444551185679362, 148466221699088672, 1339452822487618946
Offset: 0

Views

Author

Vincenzo Librandi, Jun 03 2011

Keywords

Crossrefs

Programs

  • Magma
    [9^n - 7^n: n in [0..20]]:
    
  • Mathematica
    Table[9^n-7^n,{n,0,20}] (* or *) LinearRecurrence[{16,-63},{0,2},20] (* Harvey P. Dale, Jun 21 2014 *)
    CoefficientList[Series[2 x/((1 - 7 x) (1 - 9 x)), {x, 0, 30}], x] (* Vincenzo Librandi, Oct 05 2014 *)
  • PARI
    a(n)=9^n-7^n \\ Charles R Greathouse IV, Jun 08 2011

Formula

a(n) = 16*a(n-1) - 63*a(n-2).
G.f.: 2*x/((1-7*x)*(1-9*x)). - Vincenzo Librandi, Oct 05 2014
a(n+1) = 2*A016178(n). - Vincenzo Librandi, Oct 05 2014

A167536 a(n) = 3^(2^n) - 2^(2^n).

Original entry on oeis.org

1, 5, 65, 6305, 42981185, 1853015893884545, 3433683820274065740584139537665, 11790184577738583171520532579045597727214748217668409340885505
Offset: 0

Views

Author

Jamel Ghanouchi, Nov 06 2009

Keywords

Crossrefs

Cf. A118004.

Programs

Formula

a(n)= A001047(2^n).

Extensions

Edited by R. J. Mathar, Nov 11 2009
Offset changed from 1 to 0 from Vincenzo Librandi, Jun 15 2016
Showing 1-5 of 5 results.