A118057 a(n) = 8*n^2 - 4*n - 3.
1, 21, 57, 109, 177, 261, 361, 477, 609, 757, 921, 1101, 1297, 1509, 1737, 1981, 2241, 2517, 2809, 3117, 3441, 3781, 4137, 4509, 4897, 5301, 5721, 6157, 6609, 7077, 7561, 8061, 8577, 9109, 9657, 10221, 10801, 11397, 12009, 12637, 13281, 13941, 14617
Offset: 1
Examples
a(3)=8*3^2-4*3-3=57, a(4)=8*4^2-4*4-3=109 and 57+58+...+86=87+...+108.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[8*n^2-4*n-3 : n in [1..60]]; // Wesley Ivan Hurt, Jan 28 2021
-
Mathematica
Table[8n^2-4n-3,{n,50}] (* or *) LinearRecurrence[{3,-3,1},{1,21,57},50] (* Harvey P. Dale, Sep 18 2012 *)
-
PARI
a(n)=8*n^2-4*n-3 \\ Charles R Greathouse IV, Oct 07 2015
Formula
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+18*x-3*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+8n+5)=(a(n)+8n+6)+...+a(n+1)-1; a(n+1)-1=a(n)+16n+3.
a(n)+(a(n)+1)+...+(a(n)+8n+5)=(4n-1)(4n+1)(4n+3); e.g., 21+22+...+56=693=7*9*11.
a(n) = 16*n+a(n-1)-12 (with a(1)=1). - Vincenzo Librandi, Nov 13 2010
Comments