A118061 9800*n^2-5740*n-4059.
1, 23661, 66921, 129781, 212241, 314301, 435961, 577221, 738081, 918541, 1118601, 1338261, 1577521, 1836381, 2114841, 2412901, 2730561, 3067821, 3424681, 3801141, 4197201, 4612861, 5048121, 5502981, 5977441, 6471501
Offset: 1
Examples
a(3)= 9800*3^2-5740*3-4059=66921, a(4)=9800*4^2-5740*4-4059=129781 and 66921+66922+...+103250=103251+...+129780
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Magma
[9800*n^2-5740*n-4059: n in [1..40]]; // Vincenzo Librandi, Jul 09 2012
-
Mathematica
CoefficientList[Series[(1+23658*x-4059*x^2)/(1-x)^3,{x,0,40}],x] (* Vincenzo Librandi, Jul 09 2012 *)
-
PARI
a(n)=9800*n^2-5740*n-4059 \\ Charles R Greathouse IV, May 10 2016
Formula
a(n)+(a(n)+1)+...+(a(n)+9800n+6929)=(a(n)+9800n+6930)+...+(a(n)+19600n+4059); a(n)+19600n+4059=a(n+1)-1; a(n+1)-1=a(n)+19600n+4059.
a(n)+(a(n)+1)+...+(a(n)+576n+203)=35(140n-41)(140n+29)(140n+99); e.g., 66921+66922+...+103250=3091156215=35*379*449*519.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+23658*x-4059*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
Extensions
Corrected by T. D. Noe, Nov 13 2006
Comments