cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118061 9800*n^2-5740*n-4059.

Original entry on oeis.org

1, 23661, 66921, 129781, 212241, 314301, 435961, 577221, 738081, 918541, 1118601, 1338261, 1577521, 1836381, 2114841, 2412901, 2730561, 3067821, 3424681, 3801141, 4197201, 4612861, 5048121, 5502981, 5977441, 6471501
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(5)=A001652(5)=4059 and z(5)=A001653(5)=5741; cf. A000290,A118057-A118060.

Examples

			a(3)= 9800*3^2-5740*3-4059=66921, a(4)=9800*4^2-5740*4-4059=129781 and 66921+66922+...+103250=103251+...+129780
		

Programs

Formula

a(n)+(a(n)+1)+...+(a(n)+9800n+6929)=(a(n)+9800n+6930)+...+(a(n)+19600n+4059); a(n)+19600n+4059=a(n+1)-1; a(n+1)-1=a(n)+19600n+4059.
a(n)+(a(n)+1)+...+(a(n)+576n+203)=35(140n-41)(140n+29)(140n+99); e.g., 66921+66922+...+103250=3091156215=35*379*449*519.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+23658*x-4059*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012

Extensions

Corrected by T. D. Noe, Nov 13 2006

A118058 a(n) = 49n^2 - 28n - 20.

Original entry on oeis.org

1, 120, 337, 652, 1065, 1576, 2185, 2892, 3697, 4600, 5601, 6700, 7897, 9192, 10585, 12076, 13665, 15352, 17137, 19020, 21001, 23080, 25257, 27532, 29905, 32376, 34945, 37612, 40377, 43240, 46201, 49260, 52417, 55672, 59025, 62476, 66025
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(2)=A001652(2) and z(2)=A001653(2)=29; cf. A000290,A118057,A118059-A118061.

Examples

			a(3)=49*3^2-28*3-20=337, a(4)=49*4^2-28*4-20=652 and 337+338+...+518=519+...+651.
		

Programs

Formula

a(n)+(a(n)+1)+...+(a(n)+98n+34)=7(7n-2)(7n+5)(14n+3)/2; e.g., 337+338+...+518=77805=7*19*26*45/2.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+117*x-20*x^2)/(1-x)^3. - Colin Barker, Jun 30 2012

Extensions

Corrected by Franklin T. Adams-Watters and T. D. Noe, Oct 25 2006

A118059 288*n^2 - 168*n - 119.

Original entry on oeis.org

1, 697, 1969, 3817, 6241, 9241, 12817, 16969, 21697, 27001, 32881, 39337, 46369, 53977, 62161, 70921, 80257, 90169, 100657, 111721, 123361, 135577, 148369, 161737, 175681, 190201, 205297, 220969, 237217, 254041, 271441, 289417, 307969
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+(x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(3)=A001652(3)=119 and z(3)=A001653(3)=169; cf. A000290, A118057-A118058, A118060-A118061.

Examples

			a(3)=288*3^2-168*3-119=337, a(4)=288*4^2-168*4-119=3817 and 1969+1970+...+3036=3037+...+3816
		

Programs

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+694*x-119*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+288n+203)=(a(n)+288n+204)+...+a(n+1)-1; a(n+1)-1=a(n)+576n+119.
a(n)+(a(n)+1)+...+(a(n)+288n+203)=6(24n-7)(24n+5)(24n+17); e.g., 1969+1970+...+3036=2672670=6*65*77*89.

Extensions

Corrected by T. D. Noe, Nov 13 2006

A118060 a(n) = 1681*n^2 - 984*n - 696.

Original entry on oeis.org

1, 4060, 11481, 22264, 36409, 53916, 74785, 99016, 126609, 157564, 191881, 229560, 270601, 315004, 362769, 413896, 468385, 526236, 587449, 652024, 719961, 791260, 865921, 943944, 1025329, 1110076, 1198185, 1289656, 1384489, 1482684, 1584241
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(4)=A001652(4)=696 and z(4)=A001653(4)=985; cf. A000290, A118057-A118059, A118061.

Examples

			a(3)=1681*3^2-984*3-696=11481, a(4)=1681*4^2-984*4-696=22264 and 11481+11482+...+17712=17713+...+22263
		

Programs

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+4057*x-696*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+1681n+1188) = (a(n)+1681n+1189)+ ... +a(n+1)-1; a(n+1)-1 = a(n)+3362n+696.
a(n)+(a(n)+1)+...+(a(n)+1681n+1188)=41(41n-12)(41n+29)(82n+17)/2; e.g., 11481+11482+...+17712=90965388=41*111*152*263/2.

Extensions

Corrected by T. D. Noe, Nov 13 2006

A338369 Triangle read by rows: T(n,k) = (Sum_{i=0..n-k}(1+k*i)^3)/(Sum_{i=0..n-k} (1+k*i)) for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 7, 1, 1, 10, 17, 13, 1, 1, 15, 31, 34, 21, 1, 1, 21, 49, 64, 57, 31, 1, 1, 28, 71, 103, 109, 86, 43, 1, 1, 36, 97, 151, 177, 166, 121, 57, 1, 1, 45, 127, 208, 261, 271, 235, 162, 73, 1, 1, 55, 161, 274, 361, 401, 385, 316, 209, 91, 1, 1, 66, 199, 349, 477, 556, 571, 519, 409, 262, 111, 1
Offset: 0

Views

Author

Werner Schulte, Nov 26 2020

Keywords

Comments

Seen as a square array: (1) A(n,k) = T(n+k,k) = (k^2*n^2+k*(k+2)*n+2)/2 for n,k >= 0; (2) A(n,k) = A(n-1,k) + k*(1 + k*n) for k >= 0 and n > 0; (3) A(n,k) = A(n,k-1) + k*n*(n+1) - n*(n-1)/2 for n >= 0 and k > 0; (4) G.f. of row n >= 0: (2 + (n^2+3*n-4)*x + (n^2-n+2)*x^2) / (2*(1-x)^3).

Examples

			The triangle T(n,k) for 0 <= k <= n starts:
n \k :  0   1    2    3    4    5    6    7    8    9   10   11   12
====================================================================
   0 :  1
   1 :  1   1
   2 :  1   3    1
   3 :  1   6    7    1
   4 :  1  10   17   13    1
   5 :  1  15   31   34   21    1
   6 :  1  21   49   64   57   31    1
   7 :  1  28   71  103  109   86   43    1
   8 :  1  36   97  151  177  166  121   57    1
   9 :  1  45  127  208  261  271  235  162   73    1
  10 :  1  55  161  274  361  401  385  316  209   91    1
  11 :  1  66  199  349  477  556  571  519  409  262  111    1
  12 :  1  78  241  433  609  736  793  771  673  514  321  133    1
etc.
		

Crossrefs

Cf. A000012 (column 0, main diagonal), A000217 (column 1), A056220 (column 2), A081271 (column 3), A118057 (column 4), A002061 (1st subdiagonal), A056109 (2nd subdiagonal), A085473 (3rd subdiagonal), A272039 (4th subdiagonal).

Programs

  • Mathematica
    T[n_, k_] := Sum[(1 + k*i)^3, {i, 0, n - k}]/Sum[1 + k*i, {i, 0, n - k}]; Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Nov 26 2020 *)
  • PARI
    for(n=0,12,for(k=0,n,print1((k^2*(n-k)^2+k*(k+2)*(n-k)+2)/2,", "));print(" "))

Formula

T(n,k) = (k^2*(n-k)^2 + k*(k+2)*(n-k) + 2)/2 for 0 <= k <= n.
T(n,0) = T(n,n) = 1 for n >= 0.
T(n,k) = T(n-1,k-1) + k*(n-k)*(n-k+1) - (n-k)*(n-k-1)/2 for 0 < k <= n.
T(n,k) = T(n-1,k) + k * (1+k*(n-k)) for 0 <= k < n.
G.f. of column k >= 0: (1 + (k^2+k-2)*t + (1-k)*t^2) * t^k / (1-t)^3.
E.g.f.: exp(x+y)*(2 + (x^2 + 2*x - 2)*y + (x^2 - 4*x + 2)*y^2 - (2*x - 5)*y^3 + y^4)/2. - Stefano Spezia, Nov 27 2020
Showing 1-5 of 5 results.