cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A118057 a(n) = 8*n^2 - 4*n - 3.

Original entry on oeis.org

1, 21, 57, 109, 177, 261, 361, 477, 609, 757, 921, 1101, 1297, 1509, 1737, 1981, 2241, 2517, 2809, 3117, 3441, 3781, 4137, 4509, 4897, 5301, 5721, 6157, 6609, 7077, 7561, 8061, 8577, 9109, 9657, 10221, 10801, 11397, 12009, 12637, 13281, 13941, 14617
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+ (x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(1)=A001652(1)=3 and z(1)=A001653(1)=5; cf. A000290, A118058-A118061.
Sequence found by reading the segment (1, 21) together with the line from 21, in the direction 21, 57, ..., in the square spiral whose vertices are the triangular numbers A000217. - Omar E. Pol, Sep 04 2011

Examples

			a(3)=8*3^2-4*3-3=57, a(4)=8*4^2-4*4-3=109 and 57+58+...+86=87+...+108.
		

Crossrefs

Programs

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+18*x-3*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+8n+5)=(a(n)+8n+6)+...+a(n+1)-1; a(n+1)-1=a(n)+16n+3.
a(n)+(a(n)+1)+...+(a(n)+8n+5)=(4n-1)(4n+1)(4n+3); e.g., 21+22+...+56=693=7*9*11.
a(n) = 16*n+a(n-1)-12 (with a(1)=1). - Vincenzo Librandi, Nov 13 2010
a(n) = A139098(n) - A004767(n). - Omar E. Pol, Sep 18 2012

A118059 288*n^2 - 168*n - 119.

Original entry on oeis.org

1, 697, 1969, 3817, 6241, 9241, 12817, 16969, 21697, 27001, 32881, 39337, 46369, 53977, 62161, 70921, 80257, 90169, 100657, 111721, 123361, 135577, 148369, 161737, 175681, 190201, 205297, 220969, 237217, 254041, 271441, 289417, 307969
Offset: 1

Views

Author

Charlie Marion, Apr 26 2006

Keywords

Comments

In general, all sequences of equations which contain every positive integer in order exactly once (a pairwise equal summed, ordered partition of the positive integers) may be defined as follows: For all k, let x(k)=A001652(k) and z(k)=A001653(k). Then if we define a(n) to be (x(k)+z(k))n^2-(z(k)-1)n-x(k), the following equation is true: a(n)+(a(n)+1)+...+(a(n)+(x(k)+z(k))n+(2x(k)+z(k)-1)/2)=(a(n)+(x(k)+z(k))n+(2x(k)+z(k)+1)/2)+...+(a(n)+2(x(k)+z(k))n+x(k)); a(n)+2(x(k)+z(k))n+x(k))=a(n+1)-1; e.g., in this sequence, x(3)=A001652(3)=119 and z(3)=A001653(3)=169; cf. A000290, A118057-A118058, A118060-A118061.

Examples

			a(3)=288*3^2-168*3-119=337, a(4)=288*4^2-168*4-119=3817 and 1969+1970+...+3036=3037+...+3816
		

Programs

Formula

a(n) = 3*a(n-1)-3*a(n-2)+a(n-3). G.f.: x*(1+694*x-119*x^2)/(1-x)^3. - Colin Barker, Jul 01 2012
a(n)+(a(n)+1)+...+(a(n)+288n+203)=(a(n)+288n+204)+...+a(n+1)-1; a(n+1)-1=a(n)+576n+119.
a(n)+(a(n)+1)+...+(a(n)+288n+203)=6(24n-7)(24n+5)(24n+17); e.g., 1969+1970+...+3036=2672670=6*65*77*89.

Extensions

Corrected by T. D. Noe, Nov 13 2006
Showing 1-2 of 2 results.