cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A118093 Numbers of rooted hypermaps on the torus with n darts (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 15, 165, 1611, 14805, 131307, 1138261, 9713835, 81968469, 685888171, 5702382933, 47168678571, 388580070741, 3190523226795, 26124382262613, 213415462218411, 1740019150443861, 14162920013474475, 115112250539595093, 934419385591442091, 7576722323539318101
Offset: 3

Views

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Magma
    [&+[(2^k*(4^(n-2-k)-1)*Binomial(n+k, k))/3 : k in [0..n-3]]: n in [3..25]]; // Vincenzo Librandi, Sep 16 2018
  • Mathematica
    Table[Sum[2^k (4^(n - 2 - k) - 1) Binomial[n+k, k] / 3, {k, 0, n-3}], {n, 3, 25}] (* Vincenzo Librandi, Sep 16 2018 *)
  • PARI
    a(n) = sum(k=0, n-3, 2^k*(4^(n-2-k)-1)*binomial(n+k, k))/3; \\ Michel Marcus, Dec 11 2014
    
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec((y - 1)^3/(4*(y - 2)^2*(y + 1)));
    };
    seq(21) \\ Gheorghe Coserea, Nov 06 2018
    

Formula

Conjecture: +n*(5*n-17)*a(n) -15*(n-1)*(5*n-16)*a(n-1) +12*(20*n^2-103*n+140)*a(n-2) +32*(5*n-12)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Apr 05 2018
G.f.: (1 - 7*x + 4*x^2 - (1 - 3*x)*sqrt(1 - 8*x))/(8*(1 + x)*(1 - 8*x)); equivalently, the g.f. can be rewritten as (y - 1)^3/(4*(y - 2)^2*(y + 1)), where y=G(2*x) with G the g.f. of A000108. - Gheorghe Coserea, Nov 06 2018
a(n) ~ 2^(3*n - 4) / 3 * (1 - 10/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Nov 06 2018

Extensions

More terms from Michel Marcus, Dec 11 2014