cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A118094 Numbers of unrooted hypermaps on the torus with n darts up to orientation-preserving homeomorphism (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 6, 33, 285, 2115, 16533, 126501, 972441, 7451679, 57167260, 438644841, 3369276867, 25905339483, 199408447446, 1536728368389, 11856420991413, 91579955286519, 708146055343668, 5481535740059577, 42473608898628639
Offset: 3

Views

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Maple
    Phi2 := proc(l)
        local a,k ;
        a := 0 ;
        for k in numtheory[divisors](l) do
            a := a+numtheory[mobius](l/k)*k^2 ;
        end do:
        a ;
    end proc:
    h0 := proc(m)
        if type(m,integer) then
            binomial(2*m,m)*3*2^(m-1)/(m+1)/(m+2) ;
        else
            0;
        end if;
    end proc:
    h1 := proc(n)
        local a;
        a := 0 ;
        if n >= 3 and type(n,integer) then
            a := add(2^k*(4^(n-2-k)-1)*binomial(n+k,k),k=0..n-3) ;
        end if;
        a/3 ;
    end proc:
    A118094 := proc(n)
        binomial(n/2+2,4)*h0(n/2) ;
        %+2*binomial(n/3+2,3)*h0(n/3) ;
        %+6*binomial(n/4+2,3)*h0(n/4) ;
        a := %+12*binomial(n/6+2,3)*h0(n/6) ;
        for l in numtheory[divisors](n) do
            if modp(n,l) = 0 then
                a := a+h1(n/l)*Phi2(l) ;
            end if;
        end do:
        a/n ;
    end proc:
    seq(A118094(n),n=3..14) ; # R. J. Mathar, Dec 17 2014
  • Mathematica
    h0[n_] := If[Denominator[n] == 1, 3*2^(n-1)*Binomial[2*n, n]/((n+1)*(n+2)), 0]; h1[n_] := Sum[(4^(n-2-k)-1)*Binomial[n+k, k]*2^k, {k, 0, n-3}]/3; phi2[n_] := Sum[MoebiusMu[n/d]*d^2, {d, Divisors[n]}]; a[n_] := (Binomial[n/2+2, 4]*h0[n/2] +  2*Binomial[n/3+2, 3]*h0[n/3]+6*Binomial[n/4+2, 3]*h0[n/4] + 12*Binomial[n/6+2, 3]*h0[n/6] + Sum[ phi2[d]*h1[n/d], {d, Divisors[n]}])/n; Table[a[n], {n, 3, 22}] (* Jean-François Alcover, Dec 18 2014, translated from PARI *)
  • PARI
    h0(n) = if(denominator(n)==1, 3*2^(n-1)*binomial(2*n, n)/((n+1)*(n+2)), 0);
    h1(n) = sum(k=0, n-3, (4^(n-2-k)-1)*binomial(n+k, k)<Michel Marcus, Dec 11 2014 ; corrected by Charles R Greathouse IV, Dec 17 2014

A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.

Original entry on oeis.org

1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1

Views

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Comments

Row n contains floor((n+1)/2) = A008619(n-1) terms.

Examples

			Triangle starts:
n\k  [0]       [1]        [2]         [3]         [4]        [5]
[1]  1;
[2]  3;
[3]  12,       1;
[4]  56,       15;
[5]  288,      165,       8;
[6]  1584,     1611,      252;
[7]  9152,     14805,     4956,       180;
[8]  54912,    131307,    77992,      9132;
[9]  339456,   1138261,   1074564,    268980,     8064;
[10] 2149888,  9713835,   13545216,   6010220,    579744;
[11] 13891584, 81968469,  160174960,  112868844,  23235300,  604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
		

Crossrefs

Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9).
Row sums give A003319(n+1).

Programs

  • Mathematica
    l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
    m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
    ff[1] = x^2 t[1];
    ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
    row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
    Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
  • PARI
    L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
    M1(f, N) = {
      sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
          j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
    };
    F(N) = {
      my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
      f[1] = u*v*t[1];
      for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
        sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
        j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
        f[n] /= n);
      f;
    };
    seq(N) = {
      my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
         g=vector(#v, n, Polrev(Vec(n * v[n]))));
      apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
    };
    concat(seq(14))

Formula

A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k).

A214817 Number of genus 2 rooted hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 8, 252, 4956, 77992, 1074564, 13545216, 160174960, 1805010948, 19588944336, 206254571236, 2118399516180, 21310566266640, 210636265153004, 2050696768165560, 19704531058696008, 187168609978022860, 1759888050471704664, 16398685297890141180, 151570887948878270348
Offset: 1

Views

Author

N. J. A. Sloane, Jul 31 2012

Keywords

Comments

The table in the Zograf paper has an incorrect value for a(14). - Gheorghe Coserea, Nov 11 2018

Crossrefs

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[-# (# - 1)^5*(#^4 - 6 #^3 + 36 #^2 - 50 # + 51)/(4 (# - 2)^7*(# + 1)^5) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^5*(y^4 - 6*y^3 + 36*y^2 - 50*y + 51)/(4*(y - 2)^7*(y + 1)^5));
    };
    seq(19) \\ Gheorghe Coserea, Nov 11 2018

Formula

G.f.: -y*(y - 1)^5*(y^4 - 6*y^3 + 36*y^2 - 50*y + 51)/(4*(y - 2)^7*(y + 1)^5), where y = C(2*x), C being the g.f. for A000108. - Gheorghe Coserea, Nov 11 2018

Extensions

a(13) by Noam Zeilberger, Sep 16 2018
More terms and a(14) corrected by Gheorghe Coserea, Nov 11 2018

A214818 Number of genus 3 rooted hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 180, 9132, 268980, 6010220, 112868844, 1877530740, 28540603884, 404562365316, 5422718644920, 69428442576136, 855504181649448, 10204459810035768, 118364711625485256, 1340006035830921720, 14850353930248138104, 161502853638370415864, 1727146533728893094604
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9));
    };
    seq(18) \\ Gheorghe Coserea, Nov 12 2018

Formula

G.f.: y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9), where y = C(2*x), C being the g.f. for A000108. - Gheorghe Coserea, Nov 12 2018

Extensions

a(13)-a(14) by Noam Zeilberger, Sep 16 2018
More terms from Gheorghe Coserea, Nov 11 2018

A318104 Number of genus 4 rooted hypermaps with n darts.

Original entry on oeis.org

8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
Offset: 9

Views

Author

Gheorghe Coserea, Nov 12 2018

Keywords

Comments

Column k = 4 of A321710.
a(n) = 0 for n < 9. - N. J. A. Sloane, Dec 24 2018

Examples

			A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    y = (1 - Sqrt[1 - 8 x])/(4 x);
    gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
    Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
    };
    seq(17)

Formula

G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.
Showing 1-5 of 5 results.