A321710
Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.
Original entry on oeis.org
1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1
Triangle starts:
n\k [0] [1] [2] [3] [4] [5]
[1] 1;
[2] 3;
[3] 12, 1;
[4] 56, 15;
[5] 288, 165, 8;
[6] 1584, 1611, 252;
[7] 9152, 14805, 4956, 180;
[8] 54912, 131307, 77992, 9132;
[9] 339456, 1138261, 1074564, 268980, 8064;
[10] 2149888, 9713835, 13545216, 6010220, 579744;
[11] 13891584, 81968469, 160174960, 112868844, 23235300, 604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
- Gheorghe Coserea, Rows n = 1..42, flattened
- Alain Giorgetti and Timothy R. S. Walsh, Enumeration of hypermaps of a given genus, Ars Math. Contemp. 15 (2018) 225-266.
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- P. G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
- Peter Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
ff[1] = x^2 t[1];
ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
-
L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
M1(f, N) = {
sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
};
F(N) = {
my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
f[1] = u*v*t[1];
for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
f[n] /= n);
f;
};
seq(N) = {
my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
g=vector(#v, n, Polrev(Vec(n * v[n]))));
apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
};
concat(seq(14))
A118093
Numbers of rooted hypermaps on the torus with n darts (darts are semi-edges in the particular case of ordinary maps).
Original entry on oeis.org
1, 15, 165, 1611, 14805, 131307, 1138261, 9713835, 81968469, 685888171, 5702382933, 47168678571, 388580070741, 3190523226795, 26124382262613, 213415462218411, 1740019150443861, 14162920013474475, 115112250539595093, 934419385591442091, 7576722323539318101
Offset: 3
- Vincenzo Librandi, Table of n, a(n) for n = 3..500
- A. Mednykh and R. Nedela, Counting unrooted hypermaps on closed orientable surface, 18th Intern. Conf. Formal Power Series & Algebr. Comb., Jun 19, 2006, San Diego, California (USA).
- A. Mednykh and R. Nedela, Enumeration of unrooted hypermaps of a given genus, Discr. Math., 310 (2010), 518-526. [From _N. J. A. Sloane_, Dec 19 2009]
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 3
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- P. G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
-
[&+[(2^k*(4^(n-2-k)-1)*Binomial(n+k, k))/3 : k in [0..n-3]]: n in [3..25]]; // Vincenzo Librandi, Sep 16 2018
-
Table[Sum[2^k (4^(n - 2 - k) - 1) Binomial[n+k, k] / 3, {k, 0, n-3}], {n, 3, 25}] (* Vincenzo Librandi, Sep 16 2018 *)
-
a(n) = sum(k=0, n-3, 2^k*(4^(n-2-k)-1)*binomial(n+k, k))/3; \\ Michel Marcus, Dec 11 2014
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec((y - 1)^3/(4*(y - 2)^2*(y + 1)));
};
seq(21) \\ Gheorghe Coserea, Nov 06 2018
A214818
Number of genus 3 rooted hypermaps with n darts.
Original entry on oeis.org
0, 0, 0, 0, 0, 0, 180, 9132, 268980, 6010220, 112868844, 1877530740, 28540603884, 404562365316, 5422718644920, 69428442576136, 855504181649448, 10204459810035768, 118364711625485256, 1340006035830921720, 14850353930248138104, 161502853638370415864, 1727146533728893094604
Offset: 1
- Gheorghe Coserea, Table of n, a(n) for n = 1..107 (corrected by _Georg Fischer_, Jan 20 2019)
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 5
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps
- Timothy R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- Peter G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, International Mathematics Research Notices, Volume 2015, Issue 24, 1 January 2015, 13533-13544.
- Peter G. Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9));
};
seq(18) \\ Gheorghe Coserea, Nov 12 2018
A318104
Number of genus 4 rooted hypermaps with n darts.
Original entry on oeis.org
8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
Offset: 9
A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 9..109
- Mednykh, A.; Nedela, R. Recent progress in enumeration of hypermaps, J. Math. Sci., New York 226, No. 5, 635-654 (2017) and Zap. Nauchn. Semin. POMI 446, 139-164 (2016), table 6
- Timothy R. Walsh, Space-efficient generation of nonisomorphic maps and hypermaps
- T. R. Walsh, Space-Efficient Generation of Nonisomorphic Maps and Hypermaps, J. Int. Seq. 18 (2015) # 15.4.3.
- Peter Zograf, Enumeration of Grothendieck's Dessins and KP Hierarchy, arXiv:1312.2538 [math.CO], 2014.
-
y = (1 - Sqrt[1 - 8 x])/(4 x);
gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
-
seq(N) = {
my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
};
seq(17)
Showing 1-4 of 4 results.
Comments