cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A321710 Triangle read by rows: T(n,k) is the number of rooted hypermaps of genus k with n darts.

Original entry on oeis.org

1, 3, 12, 1, 56, 15, 288, 165, 8, 1584, 1611, 252, 9152, 14805, 4956, 180, 54912, 131307, 77992, 9132, 339456, 1138261, 1074564, 268980, 8064, 2149888, 9713835, 13545216, 6010220, 579744, 13891584, 81968469, 160174960, 112868844, 23235300, 604800, 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880, 608583680, 5702382933, 19588944336, 28540603884, 16497874380, 2936606400, 68428800, 4107939840, 47168678571, 206254571236, 404562365316, 344901105444, 108502598960, 8099018496
Offset: 1

Views

Author

Gheorghe Coserea, Nov 17 2018

Keywords

Comments

Row n contains floor((n+1)/2) = A008619(n-1) terms.

Examples

			Triangle starts:
n\k  [0]       [1]        [2]         [3]         [4]        [5]
[1]  1;
[2]  3;
[3]  12,       1;
[4]  56,       15;
[5]  288,      165,       8;
[6]  1584,     1611,      252;
[7]  9152,     14805,     4956,       180;
[8]  54912,    131307,    77992,      9132;
[9]  339456,   1138261,   1074564,    268980,     8064;
[10] 2149888,  9713835,   13545216,   6010220,    579744;
[11] 13891584, 81968469,  160174960,  112868844,  23235300,  604800;
[12] 91287552, 685888171, 1805010948, 1877530740, 684173164, 57170880;
[13] ...
		

Crossrefs

Columns k=0..9 give: A000257 (k=0), A118093 (k=1), A214817 (k=2), A214818 (k=3), A318104 (k=4), A321705 (k=5), A321706 (k=6), A321707 (k=7), A321708 (k=8), A321709 (k=9).
Row sums give A003319(n+1).

Programs

  • Mathematica
    l1[f_,n_] := Sum[(i-1)t[i]D[f,t[i-1]], {i,2,n}];
    m1[f_,n_] := Sum[(i-1)t[j]t[i-j]D[f,t[i-1]] + j(i-j)t[i+1]D[f,t[j],t[i-j]], {i,2,n},{j,i-1}];
    ff[1] = x^2 t[1];
    ff[n_] := ff[n] = Simplify@(2x l1[ff[n-1],n] + m1[ff[n-1],n] + Sum[t[i+1]j(i-j)D[ff[k],t[j]]D[ff[n-1-k],t[i-j]], {i,2,n-1},{j,i-1},{k,n-2}]) / n;
    row[n_]:=Reverse[CoefficientList[n ff[n] /. {t[_]->x}, x]][[;;;;2]][[;;Quotient[n+1,2]]];
    Table[row[n], {n,14}] (* Andrei Zabolotskii, Jun 27 2025, after the PARI code *)
  • PARI
    L1(f, N) = sum(i=2, N, (i-1)*t[i]*deriv(f, t[i-1]));
    M1(f, N) = {
      sum(i=2, N, sum(j=1, i-1, (i-1)*t[j]*t[i-j]*deriv(f, t[i-1]) +
          j*(i-j)*t[i+1]*deriv(deriv(f, t[j]), t[i-j])));
    };
    F(N) = {
      my(u='x, v='x, f=vector(N)); t=vector(N+1, n, eval(Str("t", n)));
      f[1] = u*v*t[1];
      for (n=2, N, f[n] = (u + v)*L1(f[n-1], n) + M1(f[n-1], n) +
        sum(i=2, n-1, t[i+1]*sum(j=1, i-1,
        j*(i-j)*sum(k=1, n-2, deriv(f[k], t[j])*deriv(f[n-1-k], t[i-j]))));
        f[n] /= n);
      f;
    };
    seq(N) = {
      my(f=F(N), v=substvec(f, t, vector(#t, n, 'x)),
         g=vector(#v, n, Polrev(Vec(n * v[n]))));
      apply(p->Vecrev(substpol(p, 'x^2, 'x)), g);
    };
    concat(seq(14))

Formula

A000257(n)=T(n,0), A118093(n)=T(n,1), A214817(n)=T(n,2), A214818(n)=T(n,3), A060593(n)=T(2*n+1,n)=(2*n)!/(n+1), A003319(n+1)=Sum_{k=0..floor((n-1)/2)} T(n,k).

A118093 Numbers of rooted hypermaps on the torus with n darts (darts are semi-edges in the particular case of ordinary maps).

Original entry on oeis.org

1, 15, 165, 1611, 14805, 131307, 1138261, 9713835, 81968469, 685888171, 5702382933, 47168678571, 388580070741, 3190523226795, 26124382262613, 213415462218411, 1740019150443861, 14162920013474475, 115112250539595093, 934419385591442091, 7576722323539318101
Offset: 3

Views

Author

Valery A. Liskovets, Apr 13 2006

Keywords

Crossrefs

Programs

  • Magma
    [&+[(2^k*(4^(n-2-k)-1)*Binomial(n+k, k))/3 : k in [0..n-3]]: n in [3..25]]; // Vincenzo Librandi, Sep 16 2018
  • Mathematica
    Table[Sum[2^k (4^(n - 2 - k) - 1) Binomial[n+k, k] / 3, {k, 0, n-3}], {n, 3, 25}] (* Vincenzo Librandi, Sep 16 2018 *)
  • PARI
    a(n) = sum(k=0, n-3, 2^k*(4^(n-2-k)-1)*binomial(n+k, k))/3; \\ Michel Marcus, Dec 11 2014
    
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec((y - 1)^3/(4*(y - 2)^2*(y + 1)));
    };
    seq(21) \\ Gheorghe Coserea, Nov 06 2018
    

Formula

Conjecture: +n*(5*n-17)*a(n) -15*(n-1)*(5*n-16)*a(n-1) +12*(20*n^2-103*n+140)*a(n-2) +32*(5*n-12)*(2*n-5)*a(n-3)=0. - R. J. Mathar, Apr 05 2018
G.f.: (1 - 7*x + 4*x^2 - (1 - 3*x)*sqrt(1 - 8*x))/(8*(1 + x)*(1 - 8*x)); equivalently, the g.f. can be rewritten as (y - 1)^3/(4*(y - 2)^2*(y + 1)), where y=G(2*x) with G the g.f. of A000108. - Gheorghe Coserea, Nov 06 2018
a(n) ~ 2^(3*n - 4) / 3 * (1 - 10/(3*sqrt(Pi*n))). - Vaclav Kotesovec, Nov 06 2018

Extensions

More terms from Michel Marcus, Dec 11 2014

A214818 Number of genus 3 rooted hypermaps with n darts.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 180, 9132, 268980, 6010220, 112868844, 1877530740, 28540603884, 404562365316, 5422718644920, 69428442576136, 855504181649448, 10204459810035768, 118364711625485256, 1340006035830921720, 14850353930248138104, 161502853638370415864, 1727146533728893094604
Offset: 1

Views

Author

N. J. A. Sloane, Aug 01 2012

Keywords

Crossrefs

Programs

  • Mathematica
    DeleteCases[CoefficientList[Series[# (# - 1)^7*(5 #^9 - 60 #^8 + 675 #^7 - 2947 #^6 + 10005 #^5 - 20235 #^4 + 28297 #^3 - 23937 #^2 + 11418 # - 1781)/(2 (# - 2)^12*(# + 1)^9) &[(1 - Sqrt[1 - 8 x])/(4 x)], {x, 0, 23}], x], 0] (* Michael De Vlieger, Nov 26 2018 *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9));
    };
    seq(18) \\ Gheorghe Coserea, Nov 12 2018

Formula

G.f.: y*(y - 1)^7*(5*y^9 - 60*y^8 + 675*y^7 - 2947*y^6 + 10005*y^5 - 20235*y^4 + 28297*y^3 - 23937*y^2 + 11418*y - 1781)/(2*(y - 2)^12*(y + 1)^9), where y = C(2*x), C being the g.f. for A000108. - Gheorghe Coserea, Nov 12 2018

Extensions

a(13)-a(14) by Noam Zeilberger, Sep 16 2018
More terms from Gheorghe Coserea, Nov 11 2018

A318104 Number of genus 4 rooted hypermaps with n darts.

Original entry on oeis.org

8064, 579744, 23235300, 684173164, 16497874380, 344901105444, 6471056247920, 111480953909328, 1792031518697232, 27197316623478960, 393207192141924744, 5453210050430783640, 72949244341257096792, 945523594111460363208, 11918067649004916470640, 146538779626167833263888, 1762112462707129510538640
Offset: 9

Views

Author

Gheorghe Coserea, Nov 12 2018

Keywords

Comments

Column k = 4 of A321710.
a(n) = 0 for n < 9. - N. J. A. Sloane, Dec 24 2018

Examples

			A(x) = 8064*x^9 + 579744*x^10 + 23235300*x^11 + 684173164*x^12 + ...
		

Crossrefs

Programs

  • Mathematica
    y = (1 - Sqrt[1 - 8 x])/(4 x);
    gf = -y (y-1)^9 (262 y^14 - 4716 y^13 + 78327 y^12 - 569134 y^11 + 3266910 y^10 - 12675726 y^9 + 37548087 y^8 - 82680972 y^7 + 137674842 y^6 - 170295272 y^5 + 152918277 y^4 - 94811622 y^3 + 37127810 y^2 - 7566846 y + 505869)/(4 (y-2)^17 (y+1)^13);
    Drop[CoefficientList[gf + O[x]^26, x], 9] (* Jean-François Alcover, Feb 07 2019, from PARI *)
  • PARI
    seq(N) = {
      my(x='x+O('x^(N+2)), y=(1-sqrt(1-8*x))/(4*x));
      Vec(-y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13));
    };
    seq(17)

Formula

G.f.: -y*(y - 1)^9*(262*y^14 - 4716*y^13 + 78327*y^12 - 569134*y^11 + 3266910*y^10 - 12675726*y^9 + 37548087*y^8 - 82680972*y^7 + 137674842*y^6 - 170295272*y^5 + 152918277*y^4 - 94811622*y^3 + 37127810*y^2 - 7566846*y + 505869)/(4*(y - 2)^17*(y + 1)^13), where y = C(2*x), C being the g.f. for A000108.
Showing 1-4 of 4 results.