cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A163487 Primes p such that 6*p is the sum of two consecutive primes.

Original entry on oeis.org

2, 3, 5, 7, 13, 23, 31, 37, 43, 103, 127, 131, 151, 163, 167, 229, 241, 257, 293, 311, 313, 337, 389, 433, 509, 521, 523, 613, 647, 661, 719, 739, 743, 757, 797, 821, 887, 937, 953, 971, 1013, 1033, 1063, 1151, 1153, 1217, 1283, 1303, 1307, 1319, 1373, 1451
Offset: 1

Views

Author

Keywords

Examples

			2*6=12=5+7, 3*6=18=7+11, 5*6=30=13+17, ..
		

Crossrefs

Programs

  • Maple
    Primes:= select(isprime, [seq(i,i=3..10^4, 2)]):
    select(t -> t::integer and isprime(t), (Primes[1..-2]+Primes[2..-1])/6); # Robert Israel, Jun 19 2018
  • Mathematica
    Select[ListConvolve[{1,1},Prime[Range[1000]]]/6,PrimeQ] (* Paolo Xausa, Nov 03 2023 *)

Extensions

Edited by N. J. A. Sloane, Aug 08 2009

A166685 Odd numbers that are the sum of two consecutive nonprimes.

Original entry on oeis.org

1, 5, 17, 19, 29, 31, 41, 43, 49, 51, 53, 55, 65, 67, 69, 71, 77, 79, 89, 91, 97, 99, 101, 103, 109, 111, 113, 115, 125, 127, 129, 131, 137, 139, 149, 151, 153, 155, 161, 163, 169, 171, 173, 175, 181, 183, 185, 187, 189, 191, 197, 199, 209, 211, 221, 223, 229
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Oct 18 2009

Keywords

Examples

			a(1)=0(1st nonprime)+1(2nd nonprime)=1(odd);
a(2)=1(2nd nonprime)+4(3rd nonprime)=5(odd).
		

Crossrefs

Programs

  • Mathematica
    Select[Total/@Partition[Select[Range[0,200],!PrimeQ[#]&],2,1],OddQ] (* Harvey P. Dale, Mar 07 2020 *)

Extensions

Entries checked by R. J. Mathar, Apr 24 2010

A164132 Primes which are an eighth of the sum of two consecutive primes.

Original entry on oeis.org

3, 19, 59, 89, 109, 149, 151, 317, 331, 359, 389, 401, 439, 571, 599, 829, 941, 953, 1019, 1153, 1249, 1279, 1319, 1373, 1381, 1451, 1657, 1669, 1733, 1741, 1867, 1871, 1973, 2131, 2161, 2179, 2251, 2459, 2819, 3119, 3539, 3659, 3967, 4001, 4099, 4231, 4261
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 11 2009

Keywords

Comments

Primes of the form A001043(k)/8.

Examples

			19 is there because it is prime and 19=(73+79)/8.
		

Crossrefs

Programs

  • Maple
    p:= 2: R:= NULL: count:= 0:
    while count < 100 do
     q:= p; p:= nextprime(p);
     v:= (q+p)/8;
     if v::integer and isprime(v) then
       R:= R,v; count:= count+1;
     fi;
    od:
    R; # Robert Israel, Dec 08 2024
  • Mathematica
    Select[Total[#]/8&/@Partition[Prime[Range[2500]],2,1],PrimeQ]  (* Harvey P. Dale, Apr 22 2011 *)

Extensions

Extended by R. J. Mathar, Aug 27 2009

A164134 Primes p such that 12*p is the sum of two consecutive primes.

Original entry on oeis.org

2, 3, 5, 7, 17, 23, 31, 41, 47, 71, 97, 103, 107, 137, 139, 193, 283, 313, 337, 347, 349, 373, 397, 421, 443, 467, 487, 491, 577, 587, 593, 619, 631, 643, 653, 673, 691, 701, 773, 787, 811, 827, 907, 991, 1021, 1033, 1051, 1093, 1117, 1217, 1249, 1259, 1289
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 11 2009

Keywords

Examples

			p=17 is there because it is prime and 12*17=101+103 = A001043(26) .
		

Crossrefs

Programs

  • Mathematica
    Select[ListConvolve[{1,1},Prime[Range[2000]]]/12,PrimeQ] (* Paolo Xausa, Nov 03 2023 *)

Extensions

233 replaced by 283 and extended by R. J. Mathar, Aug 21 2009

A203836 Smallest sum s of two consecutive primes such that s = 0 mod prime(n).

Original entry on oeis.org

8, 12, 5, 42, 198, 52, 68, 152, 138, 696, 186, 222, 410, 172, 564, 1272, 472, 1220, 268, 852, 1460, 2212, 1494, 712, 1164, 1818, 618, 1284, 872, 2486, 508, 786, 548, 1668, 1192, 906, 3768, 978, 668, 6228, 3222, 6516, 3820, 772, 4728, 3980, 6330, 892, 5448, 1374
Offset: 1

Views

Author

Zak Seidov, Jan 06 2012

Keywords

Comments

Besides a(3)=5, all terms are even and >=4. - Zak Seidov, Nov 29 2014

Examples

			a(1) = 8 = 3 + 5 is the least sum of two consecutive primes that is a multiple of prime(1) = 2.
a(3) = 5 = 2 + 3 is the least sum of two consecutive primes that is a multiple of prime(3) = 5.
		

Crossrefs

Cf. A001043, A062703, A111163, A247245, A247252, A188815 (the smaller prime), A118134.

Programs

  • Maple
    N := 100: # for a(1)..a(N)
    M := ithprime(N):
    V := Vector(M):
    count:= 0:
    for i from 1 while count < N do
      x:= ithprime(i)+ithprime(i+1);
      Q:= convert(select(t -> t <= M and V[t]=0, numtheory:-factorset(x)), list);
      V[Q]:= x;
      count:= count + nops(Q);
    od:
    seq(V[ithprime(i)], i=1..N); # Robert Israel, May 25 2020
  • Mathematica
    pr=Prime[Range[1000]];rm=Rest[pr]+Most[pr];Table[Select[rm,Mod[#,pr[[n]]]==0&][[1]],{n,50}]
    s = Total /@ Partition[Prime@ Range[10^4], 2, 1]; Table[SelectFirst[s, Divisible[#, Prime@ n] &], {n, 52}] (* Michael De Vlieger, Jul 04 2017 *)
  • PARI
    a(n)=p = 2; pn = prime(n); forprime(q=3, , if (((s=p+q) % pn) == 0, return (s)); p = q;); \\ Michel Marcus, Jul 04 2017
    
  • PARI
    isA001043(n)=precprime((n-1)/2)+nextprime(n/2)==n&&n>2
    a(n,p=prime(n))=if(p==5, return(5)); my(k=2); while(!isA001043(k*p), k+=2); k*p \\ Charles R Greathouse IV, Jul 05 2017

Formula

a(n) = 4*prime(n) if prime(n) is in A118134. - Robert Israel, May 25 2020

A339414 Primes p such that (p+q)/4 is prime, where q is the next prime after p.

Original entry on oeis.org

3, 5, 23, 31, 83, 131, 251, 271, 331, 383, 443, 563, 971, 1123, 1223, 1231, 1283, 1291, 1543, 2063, 2371, 2383, 2551, 2851, 2903, 2963, 3083, 3323, 3691, 3889, 4051, 4283, 4591, 4733, 4831, 4871, 4951, 5003, 5209, 5351, 5683, 5711, 5851, 6229, 6271, 6323, 6491, 6863, 6911, 7393, 7451, 7583, 7643
Offset: 1

Views

Author

Robert Israel, Dec 03 2020

Keywords

Comments

After the initial 2 terms, a(n)=2*A118134(n)-3. - Hugo Pfoertner, Dec 03 2020

Examples

			a(5)=83 is in the sequence because it is prime, the next prime is 89, and (83+89)/4 = 43 is prime.
		

Crossrefs

Subset of A098058.
Cf. A118134.

Programs

  • Maple
    P:= select(isprime, [seq(i,i=3..10000,2)]):
    R:= (P[1..-2]+P[2..-1])/4:
    P[select(i-> R[i]::integer and isprime(R[i]), [$1..nops(R)])];
  • PARI
    isok(p) = isprime(p) && iferr(isprime((p+nextprime(p+1))/4),E,0); \\ Michel Marcus, Dec 04 2020

A098016 Indices x such that (1/4)(prime(x+1) + prime(x)) is prime.

Original entry on oeis.org

2, 3, 9, 11, 23, 32, 54, 58, 67, 76, 86, 103, 164, 188, 200, 202, 208, 210, 243, 311, 351, 354, 374, 414, 420, 427, 441, 468, 515, 539, 559, 588, 621, 639, 650, 652, 662, 670, 693, 708, 748, 752, 769, 811, 816, 823, 842, 883, 889, 939, 943, 963, 970, 1006, 1009
Offset: 1

Views

Author

Cino Hilliard, Sep 09 2004

Keywords

Comments

Conjecture: (1/2)(prime(x+1) + prime(x)) is not prime for all x.
This is obvious: (prime(x+1)+prime(x))/2 is strictly between prime(x) and prime(x+1), so if it were prime, prime(x+1) wouldn't be the next prime after prime(x). - Robert Israel, Feb 04 2019

Examples

			Prime(2+1) + prime(2) = 5+3 = 8. 1/4(8) = 2. 2 is the first entry.
		

Crossrefs

Programs

  • Maple
    filter:= proc(t) local v; v:= (ithprime(t)+ithprime(t+1))/4; v::integer and isprime(v) end proc:
    select(filter, [$1..2000]); # Robert Israel, Feb 04 2019
  • Mathematica
    Transpose[Select[Table[{i,Prime[i],Prime[i+1]}, {i,1200}], PrimeQ[Total[Rest[#]]/4]&]][[1]](* Harvey P. Dale, Mar 24 2011 *)
    Position[Partition[Prime[Range[1100]],2,1],?(PrimeQ[Total[#]/4]&)]//Flatten (* _Harvey P. Dale, Sep 11 2022 *)
  • PARI
    f(n) = for(x=1,n,y=prime(x+1)+prime(x);if(y%4==0 && isprime(y\4),print1(x",")))

Formula

a(n) = A000720(2*A118134(n)-1). - Robert Israel, Feb 04 2019

A164133 Primes p such that 4*p and 6*p are each the sum of two consecutive primes.

Original entry on oeis.org

2, 3, 13, 43, 127, 167, 613, 647, 1033, 1483, 1543, 2297, 2927, 3701, 3823, 4463, 5101, 5417, 5657, 6133, 8081, 9227, 11273, 11833, 12511, 13291, 13873, 17627, 19853, 20011, 21313, 21727, 22193, 23041, 23059, 23081, 23159, 24443, 26347, 26947, 27407, 27527
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Aug 11 2009

Keywords

Examples

			p=13 is in the sequence because 4*13 = 52 = A001043(9) and 6*13 = 78 = A001043(12) are both in A001043.
		

Crossrefs

Programs

  • Maple
    P:= select(isprime, [2,seq(i,i=3..10^6)]):
    PS:= P[1..-2] + P[2..-1]:
    convert(P,set) intersect convert(1/4 * PS, set) intersect convert(1/6*PS,set); # Robert Israel, Dec 08 2024
  • Mathematica
    stcpQ[n_]:=Module[{a=4n,b=6n},a==NextPrime[a/2]+NextPrime[a/2,-1]&&b== NextPrime[b/2]+NextPrime[b/2,-1]]; Select[Prime[Range[3100]],stcpQ] (* Harvey P. Dale, May 01 2019 *)

Formula

A163487 INTERSECT A118134.

Extensions

Extended by R. J. Mathar, Aug 27 2009

A289270 Primes p such that 10*p is the sum of two consecutive primes.

Original entry on oeis.org

3, 41, 103, 293, 359, 379, 421, 653, 701, 733, 821, 883, 907, 911, 937, 1009, 1237, 1423, 1567, 1627, 1637, 1931, 1973, 2017, 2129, 2203, 2281, 2417, 2459, 2477, 2647, 2879, 3209, 3271, 3347, 3413, 3539, 3593, 3659
Offset: 1

Views

Author

Zak Seidov, Jun 30 2017

Keywords

Examples

			10*3 = 30 = prime(6) + prime(7) = 13+17;
10*41 = 410 = prime(46) + prime(47) = 199+211.
		

Crossrefs

Primes p such that m*p is the sum of two consecutive primes: A118134 (m=4), A163487 (m=6), A164132 (m=8), this sequence (m=10), A164134 (m=12).

Programs

  • Mathematica
    Select[Map[Total, Partition[Prime@ Range@ 2200, 2, 1]]/10, PrimeQ] (* Michael De Vlieger, Jun 30 2017 *)
  • PARI
    is(n)=isprime(n) && precprime(5*n)+nextprime(5*n)==10*n \\ Charles R Greathouse IV, Jul 02 2017

A350736 Lesser twin primes p such that 4*p is the sum of two consecutive primes.

Original entry on oeis.org

3, 17, 137, 617, 1277, 1427, 1949, 2027, 3119, 4157, 5417, 5657, 10139, 13217, 13691, 13709, 16187, 17657, 17837, 18911, 19379, 20507, 20807, 24371, 25577, 27407, 27527, 29207, 31391, 31847, 32117, 32909, 33767, 34847, 36467, 39839, 40037, 47057, 47387, 47657, 48311, 49199, 49367, 49739, 49787
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Jan 12 2022

Keywords

Examples

			a(3) = 137 is a term because 137 and 139 are primes and 4*137 = 548 is the sum of consecutive primes 271 and 277.
		

Crossrefs

Intersection of A001359 and A118134.

Programs

  • Maple
    P:= select(isprime,{seq(i,i=3..100000,2)}):
    T:= P intersect map(`-`,P,2):
    sort(convert(select(r -> prevprime(2*r)+nextprime(2*r)=4*r,T),list));
  • Mathematica
    Select[Plus @@@ Partition[Select[Range[10^5], PrimeQ], 2, 1]/4, And @@ PrimeQ[# + {0, 2}] &] (* Amiram Eldar, Jan 13 2022 *)
Showing 1-10 of 12 results. Next