A118391 Numerator of sum of reciprocals of first n tetrahedral numbers A000292.
1, 5, 27, 7, 10, 81, 35, 22, 81, 65, 77, 135, 52, 119, 405, 76, 85, 567, 209, 115, 378, 275, 299, 486, 175, 377, 1215, 217, 232, 1485, 527, 280, 891, 629, 665, 1053, 370, 779, 2457, 430, 451, 2835, 989, 517, 1620, 1127, 1175, 1836, 637, 1325, 4131, 715, 742
Offset: 1
Examples
a(1) = 1 = numerator of 1/1. a(2) = 5 = numerator of 5/4 = 1/1 + 1/4. a(3) = 27 = numerator of 27/20 = 1/1 + 1/4 + 1/10. a(4) = 7 = numerator of 7/5 = 1/1 + 1/4 + 1/10 + 1/20. a(5) = 10 = numerator of 10/7 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35. a(20) = 115 = numerator of 115/77 = 1/1 + 1/4 + 1/10 + 1/20 + 1/35 + 1/56 + 1/84 + 1/120 + 1/165 + 1/220 + 1/286 + 1/364 + 1/455 + 1/560 + 1/680 + 1/816 + 1/969 + 1/1140 + 1/1330 + 1/1540.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[Numerator(3*n*(n+3)/(2*(n+1)*(n+2))): n in [1..60]]; // G. C. Greubel, Feb 18 2021
-
Maple
A118391:= n-> numer(3*n*(n+3)/(2*(n+1)*(n+2))); seq(A118391(n), n=1..60) # G. C. Greubel, Feb 18 2021
-
Mathematica
Table[ Numerator[3n(n+3)/(2(n+1)(n+2))], {n,1,100} ] (* Alexander Adamchuk, May 08 2007 *) Accumulate[1/Binomial[Range[60]+2,3]]//Numerator (* Harvey P. Dale, Aug 31 2023 *)
-
PARI
s=0;for(i=3,50,s+=1/binomial(i,3);print(numerator(s))) /* Phil Carmody, Mar 27 2012 */
-
Sage
[numerator(3*n*(n+3)/(2*(n+1)*(n+2))) for n in (1..60)] # G. C. Greubel, Feb 18 2021
Formula
Extensions
More terms from Alexander Adamchuk, May 08 2007
Comments