cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A144181 INVERT transform of A118434, = row sums of triangle A144182.

Original entry on oeis.org

1, 1, 3, 9, 11, 17, 35, 57, 91, 161, 275, 457, 779, 1329, 2243, 3801, 6459, 10945, 18547, 31465, 53355, 90449, 153379, 260089, 440987, 747745, 1267923, 2149897, 3645387, 6181233, 10481027, 17771801, 30134267, 51096321, 86639923, 146908457, 249101099
Offset: 0

Views

Author

Gary W. Adamson, Sep 13 2008

Keywords

Comments

A118434 = row sums of the self-inverse triangle A118433 (a generator for the Rao Uppuluri-Carpenter numbers, A000587).
A144181 = row sums of triangle A144182.

Examples

			a(3) = 9 = sum of row 3 terms, triangle A144182: (4 + 2 + 0 + 3).
		

Crossrefs

Programs

  • PARI
    Vec((1+2*x^2+4*x^3)/(1-x-2*x^3) + O(x^40)) \\ Colin Barker, Aug 21 2016

Formula

Equals row sums of triangle A144182 and INVERT transform of A118434: (1, 0, 2, 4, -4, 0, -8, -16, 16, 0, 32,...).
From Colin Barker, Aug 21 2016: (Start)
a(n) = a(n-1)+2*a(n-3) for n>3.
G.f.: (1+2*x^2+4*x^3) / (1-x-2*x^3).
(End)

Extensions

More terms from Alois P. Heinz, May 23 2015

A118433 Self-inverse triangle H, read by rows; a nontrivial matrix square-root of identity: H^2 = I, where H(n,k) = C(n,k)*(-1)^(floor((n+1)/2) - floor(k/2) + n - k) for n >= k >= 0.

Original entry on oeis.org

1, 1, -1, -1, 2, 1, -1, 3, 3, -1, 1, -4, -6, 4, 1, 1, -5, -10, 10, 5, -1, -1, 6, 15, -20, -15, 6, 1, -1, 7, 21, -35, -35, 21, 7, -1, 1, -8, -28, 56, 70, -56, -28, 8, 1, 1, -9, -36, 84, 126, -126, -84, 36, 9, -1, -1, 10, 45, -120, -210, 252, 210, -120, -45, 10, 1
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Comments

There are an infinite number of integer square-roots of the identity matrix.

Examples

			Triangle H begins:
   1;
   1, -1;
  -1,  2,   1;
  -1,  3,   3,   -1;
   1, -4,  -6,    4,    1;
   1, -5, -10,   10,    5,   -1;
  -1,  6,  15,  -20,  -15,    6,   1;
  -1,  7,  21,  -35,  -35,   21,   7,   -1;
   1, -8, -28,   56,   70,  -56, -28,    8,   1;
   1, -9, -36,   84,  126, -126, -84,   36,   9, -1;
  -1, 10,  45, -120, -210,  252, 210, -120, -45, 10, 1; ...
G.f.s for columns:
k=0: (x + 1)/(1+x^2);
k=1: (x^2 + 2*x - 1)/(1+x^2)^2;
k=2: (-x^3 - 3*x^2 + 3*x + 1)/(1+x^2)^3;
k=3: (-x^4 - 4*x^3 + 6*x^2 + 4*x - 1)/(1+x^2)^4;
k=4: (x^5 + 5*x^4 - 10*x^3 - 10*x^2 + 5*x + 1)/(1+x^2)^5;
k=5: (x^6 + 6*x^5 - 15*x^4 - 20*x^3 + 15*x^2 + 6*x - 1)/(1+x^2)^6.
The g.f. of column k is thus:
G_k(x) = (Sum_{j=0..k+1} -H(k+1,j)*(-x)^(k+1-j))/(1+x^2)^(k+1).
The triangle formed from above polynomial numerators of column g.f.s is described by the e.g.f.: cos(x*y)*exp(-x) - sin(x*y)*exp(x).
		

Crossrefs

Cf. A118434 (row sums), A118435 (H*[C^-1]*H).

Programs

  • Mathematica
    H[n_, k_] := Binomial[n, k]*(-1)^(Quotient[n+1, 2]-Quotient[k, 2]+n-k);
    Table[H[n, k], {n, 0, 12}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 08 2024 *)
  • PARI
    {H(n,k)=binomial(n,k)*(-1)^((n+1)\2-k\2+n-k)}
    for(n=0,12,for(k=0,n,print1(H(n,k),", "));print(""))
    
  • PARI
    /* Using E.G.F.: */
    {H(n,k)=local(x=X+X*O(X^n),y=Y+Y*O(Y^k));n!*polcoeff(polcoeff( cos(x)*exp(-x*y)+sin(x)*exp(x*y),n,X),k,Y)}
    for(n=0,12,for(k=0,n,print1(H(n,k),", "));print(""))
    
  • PARI
    /* Using O.G.F.: */
    {H(n,k)=polcoeff(polcoeff((1+x*(1-y)+x^2*(1+2*y-y^2)+x^3*(1+y+y^2+y^3))/(1+2*x^2*(1-y^2)+x^4*(1+y^2)^2+x*O(x^n)+y*O(y^k)),n,x),k,y)}
    for(n=0,12,for(k=0,n,print1(H(n,k),", "));print(""))

Formula

E.g.f.: A(x,y) = cos(x)*exp(-x*y) + sin(x)*exp(x*y).
O.g.f.: A(x,y) = (1 + x*(1-y) + x^2*(1+2*y-y^2) + x^3*(1+y+y^2+y^3)) / (1 + 2*x^2*(1-y^2) + x^4*(1+y^2)^2).

A118436 Column 0 of triangle A118435.

Original entry on oeis.org

1, 1, -3, -11, 25, 41, -43, 29, -335, -1199, 3117, 6469, -10295, -8839, -16123, -108691, 354145, 873121, -1721763, -2521451, 1476985, -6699319, 34182197, 103232189, -242017775, -451910159, 597551757, 130656229, 2465133865, 10513816601, -29729597083, -66349305331
Offset: 0

Views

Author

Paul D. Hanna, Apr 28 2006

Keywords

Comments

Binomial transform of A118434 = (1, 1, 3, 11, 25, 41, 43, -29, -335, -1199, ...). - Gary W. Adamson, Sep 19 2008

Crossrefs

Cf. A118434, A118435 (triangle), A118437 (row sums).

Programs

  • Mathematica
    LinearRecurrence[{0, -5, 0, -19, 0, 25}, {1, 1, -3, -11, 25, 41}, 32] (* Jean-François Alcover, Apr 08 2024 *)
    CoefficientList[Series[(1+x+2x^2-6x^3+29x^4+5x^5)/((1-x^2)(1+6x^2+25x^4)),{x,0,40}],x] (* Harvey P. Dale, Oct 17 2024 *)
  • PARI
    {a(n)=polcoeff((1+x+2*x^2-6*x^3+29*x^4+5*x^5)/(1-x^2)/(1+6*x^2+25*x^4+x*O(x^n)),n)}

Formula

G.f.: (1 + x + 2*x^2 - 6*x^3 + 29*x^4 + 5*x^5)/((1-x^2)*(1 + 6*x^2 + 25*x^4)).

A144182 Eigentriangle, row sums = A144181.

Original entry on oeis.org

1, 0, 1, 2, 0, 2, 4, 2, 0, 3, -4, 4, 2, 0, 9, 0, -4, 4, 6, 0, 11, -8, 0, -4, 12, 18, 0, 17, -16, -8, 0, -12, 36, 22, 0, 35, 16, -16, -8, 0, -36, 44, 34, 0, 57, 0, 16, -16, -24, 0, -44, 68, 70, 0, 91, 32, 0, 16, -48, -72, 0, -68, 140, 114, 0, 161
Offset: 0

Views

Author

Gary W. Adamson, Sep 13 2008

Keywords

Comments

Row sums = A144181: (1, 1, 3, 9, 11, 17, 35,...).
Left border = A118434: (1, 0, 2, 4, -4, 0, -8,...); (i.e. row sums of the self-inverse triangle A118433).
Triangle A144183 = partial sums starting from the right of A144182.
Sum of n-th row terms = rightmost term of next row.

Examples

			First few rows of the triangle are:
1;
0, 1;
2, 0, 1;
4, 2, 0, 3;
-4, 4, 2, 0, 9;
0, -4, 4, 6, 0, 11;
-8, 0, -4, 12, 18, 0, 17;
-16, -8, 0, -12, 36, 22, 0, 35;
...
row 3 = (4, 2, 0, 3) = termwise products of (4, 2, 0, 1) and (1, 1, 1, 3) = (4*1, 2*1, 0*1, 1*3).
		

Crossrefs

Formula

Triangle read by rows, T(n,k) = A118434(n-k)*A144181(k-1); where A144181(k-1) = A144181 shifted to (1, 1, 1, 3, 9, 11, 17, 35, 57, 91, 161,...).

A144183 Triangle read by rows, A144182 * A000012.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 9, 5, 3, 3, 11, 15, 11, 9, 9, 17, 17, 21, 17, 11, 11, 35, 43, 43, 47, 35, 17, 17, 57, 73, 81, 81, 93, 57, 35, 35, 91, 75, 91, 99, 99, 135, 91, 57, 57, 161, 161, 145, 161, 185, 185, 229, 161, 91, 91, 275, 243, 243, 227, 275, 347, 347, 415, 275, 161, 161
Offset: 0

Views

Author

Gary W. Adamson, Sep 13 2008

Keywords

Comments

Left border = A144181: (1, 1, 3, 9, 11, 17, 35,...) = INVERT transform of A118434. Right border = A144181 shifted.

Examples

			First few rows of the triangle =
1;
1, 1;
3, 1, 1;
9, 5, 3, 3;
11, 15, 11, 9, 9;
17, 17, 21, 17, 11, 11;
35, 43, 43, 47, 35, 17, 17;
57, 73, 81, 81, 93, 57, 35, 35;
91, 75, 91, 99, 99, 135, 91, 57, 57;
...
Row 3 = (9, 5, 3, 3) = partial sums from the right of row 3, triangle A144182: (4, 2, 0, 3).
		

Crossrefs

Formula

Triangle read by rows, A144182 * A000012; (equivalent to taking partial row sums
of A144182 starting from the right). A000012 = an infinite lower triangular matrix with all 1's and the rest zeros.

A144185 Triangle, row sums = a signed, shifted version of A000587, the Rao Uppuluri-Carpenter numbers.

Original entry on oeis.org

1, 1, -1, -1, 2, 0, -1, 3, 0, -1, 1, -4, 0, 4, 1, 1, -5, 0, 10, 5, -2, -1, 6, 0, -20, -15, 12, 9, -1, 7, 0, -35, -35, 42, 63, 9, 1, -8, 0, 56, 70, -112, -252, -72, 50, 1, -9, 0, 84, 126, -252, -756, -324, 450, 267, -1, 10, 0, -120, -210, 504, 1890, 1080, -2250, -2670
Offset: 0

Views

Author

Gary W. Adamson, Sep 13 2008

Keywords

Comments

Right border = A000587, the Rao Uppuluri-Carpenter numbers, with different signs: (1, 1, 0, 1, 1, 2, 9, -9, 50, -267, -413, -2180,...).
Row sums = the same sequence shifted: (1, 0, 1, 1, 2, 9,...).
Let A = the self-inverse triangle, A118433. Shift the triangle down one place placing "1" at (0,0). Lim_{n->oo} A^n, = a signed version B of the Rao Uppuluri-Carpenter numbers (A000587), as follows: (1, 1, 0, 1, 1, 2, 9, -9, 50, -267, -413, -2180,...). This triangle = (A * (an infinite lower triangular matrix with B as the main diagonal and the rest zeros)). These operations are equivalent to (by rows), taking termwise products of A118433 row terms and B, the signed version of the Rao Uppuluri-Carpenter numbers.

Examples

			First few rows of the triangle =
  1;
  1, -1;
  -1, 2, 0;
  -1, 3, 0, -1,
  1, -4, 0, 4, 1;
  1, -5, 0, 10, 5, -2;
  -1, 6, 0, -20, -15, 12, 9;
  -1, 7, 0, -35, -35, 42, 63, 9;
  1, -8, 0, 56, 70, -112, -252, -72, 50;
  1, -9, 0, 84, 126, -252, -756, -324, 450, 267;
  -1, 10, 0, -120, -210, 504, 1890, 1080, -2250, -2670, -413;
...
Example: row 5 = (1, -5, 0, 10, 5, -2) = termwise products of row 5 of the self-inverse triangle A118433: (1, -5, -10, 10, 5, -1) and the first 6 terms of the "B" signed version of A000587 (the Rao Uppuluri-Carpenter numbers): (1, 1, 0, 1, 1, 2) = (1*1, -5*1, 0*0, 10*1, 5*1, -5*2).
		

Crossrefs

A331969 T(n, k) = [x^(n-k)] 1/(((1 - 2*x)^k)*(1 - x)^(k + 1)). Triangle read by rows, for 0 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 11, 7, 1, 1, 26, 30, 10, 1, 1, 57, 102, 58, 13, 1, 1, 120, 303, 256, 95, 16, 1, 1, 247, 825, 955, 515, 141, 19, 1, 1, 502, 2116, 3178, 2310, 906, 196, 22, 1, 1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1
Offset: 0

Views

Author

Peter Luschny, Feb 03 2020

Keywords

Comments

The triangle is the matrix inverse of the Riordan square (see A321620) generated by (1 + x - sqrt(1 - 6*x + x^2))/(4*x) (see A172094), where we take the absolute value of the terms.
T(n,k) is the number of evil-avoiding (2413, 3214, 4132, and 4213 avoiding) permutations of length (n+2) that start with 1 and whose inverse has k descents. - Donghyun Kim, Aug 16 2021

Examples

			Triangle starts:
[0] [1]
[1] [1,    1]
[2] [1,    4,    1]
[3] [1,   11,    7,    1]
[4] [1,   26,   30,   10,    1]
[5] [1,   57,  102,   58,   13,    1]
[6] [1,  120,  303,  256,   95,   16,    1]
[7] [1,  247,  825,  955,  515,  141,   19,   1]
[8] [1,  502, 2116, 3178, 2310,  906,  196,  22,  1]
[9] [1, 1013, 5200, 9740, 9078, 4746, 1456, 260, 25, 1]
...
Seen as a square array (the triangle is formed by descending antidiagonals):
1,  1,   1,    1,    1,     1,      1,      1,       1, ... [A000012]
1,  4,  11,   26,   57,   120,    247,    502,    1013, ... [A000295]
1,  7,  30,  102,  303,   825,   2116,   5200,   12381, ... [A045889]
1, 10,  58,  256,  955,  3178,   9740,  28064,   77093, ... [A055583]
1, 13,  95,  515, 2310,  9078,  32354, 106970,  333295, ...
1, 16, 141,  906, 4746, 21504,  87374, 326084, 1136799, ...
1, 19, 196, 1456, 8722, 44758, 204204, 849180, 3275931, ...
		

Crossrefs

Row sums A006012, alternating row sums A118434 with different signs, central column A091527.
T(n, 1) = A000295(n+1) for n >= 1, T(n, 2) = A045889(n-2) for n >= 2, T(n, 3) = A055583(n-3) for n >= 3.
Cf. A172094 (inverse up to sign).

Programs

  • Maple
    gf := k -> 1/(((1-2*x)^k)*(1-x)^(k+1)): ser := k -> series(gf(k), x, 32):
    # Prints the triangle:
    seq(lprint(seq(coeff(ser(k), x, n-k), k=0..n)), n=0..6);
    # Prints the square array:
    seq(lprint(seq(coeff(ser(k), x, n), n=0..8)), k=0..6);
  • Mathematica
    (* The function RiordanSquare is defined in A321620; returns the triangle as a lower triangular matrix. *)
    M := RiordanSquare[(1 + x - Sqrt[1 - 6 x + x^2])/(4 x), 9];
    Abs[#] & /@ Inverse[PadRight[M]]
Showing 1-7 of 7 results.