A144181 INVERT transform of A118434, = row sums of triangle A144182.
1, 1, 3, 9, 11, 17, 35, 57, 91, 161, 275, 457, 779, 1329, 2243, 3801, 6459, 10945, 18547, 31465, 53355, 90449, 153379, 260089, 440987, 747745, 1267923, 2149897, 3645387, 6181233, 10481027, 17771801, 30134267, 51096321, 86639923, 146908457, 249101099
Offset: 0
Examples
a(3) = 9 = sum of row 3 terms, triangle A144182: (4 + 2 + 0 + 3).
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,0,2).
Programs
-
PARI
Vec((1+2*x^2+4*x^3)/(1-x-2*x^3) + O(x^40)) \\ Colin Barker, Aug 21 2016
Formula
Equals row sums of triangle A144182 and INVERT transform of A118434: (1, 0, 2, 4, -4, 0, -8, -16, 16, 0, 32,...).
From Colin Barker, Aug 21 2016: (Start)
a(n) = a(n-1)+2*a(n-3) for n>3.
G.f.: (1+2*x^2+4*x^3) / (1-x-2*x^3).
(End)
Extensions
More terms from Alois P. Heinz, May 23 2015
Comments