cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A212402 T(n,k)=Number of binary arrays of length n+2*k-1 with no more than k ones in any length 2k subsequence (=50% duty cycle).

Original entry on oeis.org

3, 11, 5, 42, 19, 8, 163, 74, 33, 13, 638, 291, 132, 57, 21, 2510, 1150, 527, 236, 97, 34, 9908, 4558, 2104, 959, 421, 166, 55, 39203, 18100, 8402, 3872, 1747, 747, 285, 89, 155382, 71971, 33560, 15586, 7143, 3179, 1314, 489, 144, 616666, 286454, 134075
Offset: 1

Views

Author

R. H. Hardin May 14 2012

Keywords

Comments

Table starts
..3..11...42...163...638...2510...9908...39203...155382...616666...2449868
..5..19...74...291..1150...4558..18100...71971...286454..1140954...4547020
..8..33..132...527..2104...8402..33560..134075...535728..2140910...8556568
.13..57..236...959..3872..15586..62632..251419..1008536..4043582..16206152
.21..97..421..1747..7143..29002.117290..473171..1905675..7665886..30810054
.34.166..747..3179.13185..54042.220054..892387..3609005.14567294..58714842
.55.285.1314..5769.24322.100736.413220.1685039..6844362.27724036.112072540
.89.489.2318.10425.44794.187696.776116.3183631.12990818.52815156.214150732

Examples

			Some solutions for n=3 k=4
..0....0....0....1....0....0....0....0....1....1....1....0....1....0....1....1
..1....0....1....1....0....0....1....0....1....1....0....1....1....1....0....0
..1....1....1....0....1....0....1....0....1....0....1....0....0....0....0....0
..0....1....1....0....1....0....1....0....0....1....0....1....1....0....1....0
..1....0....0....0....1....1....1....1....0....0....1....0....0....1....0....0
..0....0....0....1....0....1....0....0....0....0....0....0....0....0....1....0
..0....0....0....0....0....0....0....0....0....0....0....0....0....1....1....1
..0....1....1....0....0....1....0....1....0....1....1....0....1....0....0....1
..0....0....0....1....0....1....0....1....1....1....1....1....0....0....0....1
..1....0....0....1....1....0....0....0....1....1....0....1....0....0....1....1
		

Crossrefs

Column 1 is A000045(n+3)
Column 2 is A118647(n+3)
Column 3 is A133551(n+5)
Row 1 is A032443

A241964 T(n,k)=Number of length n+3 0..k arrays with no consecutive four elements summing to more than 2*k.

Original entry on oeis.org

11, 50, 19, 150, 124, 33, 355, 486, 311, 57, 721, 1421, 1597, 775, 97, 1316, 3437, 5778, 5211, 1895, 166, 2220, 7280, 16660, 23320, 16649, 4663, 285, 3525, 13980, 40978, 80132, 92037, 53553, 11518, 489, 5335, 24897, 89622, 228826, 376559, 365810
Offset: 1

Views

Author

R. H. Hardin, May 03 2014

Keywords

Comments

Table starts
..11....50....150.....355.....721.....1316......2220......3525.......5335
..19...124....486....1421....3437.....7280.....13980.....24897......41767
..33...311...1597....5778...16660....40978.....89622....179079.....333091
..57...775...5211...23320...80132...228826....569874...1277427....2634115
..97..1895..16649...92037..376559..1247602...3536286...8889273...20314789
.166..4663..53553..365810.1782453..6853011..22111157..62336336..157897575
.285.11518.172980.1460409.8476317.37822419.138925925.439298830.1233421948

Examples

			Some solutions for n=4 k=4
..0....2....0....4....4....4....3....0....4....2....2....3....2....0....3....0
..3....2....4....2....3....0....3....0....1....3....2....1....4....2....4....0
..2....1....1....0....0....0....0....3....0....0....1....0....0....1....0....2
..0....3....0....1....0....2....2....1....2....1....2....0....2....3....0....1
..0....0....0....2....0....3....0....1....2....0....2....1....0....1....0....2
..1....0....0....1....0....0....3....1....4....1....2....3....3....1....2....0
..3....3....0....4....3....2....3....4....0....0....2....0....3....1....3....3
		

Crossrefs

Column 1 is A118647(n+3)
Column 2 is A212226
Column 3 is A212465
Row 1 is A212560(n+1)

Formula

Empirical for column k:
k=1: a(n) = a(n-1) +a(n-2) +a(n-4) -a(n-6)
k=2: [order 17]
k=3: [order 44]
k=4: [order 85]
Empirical for row n:
n=1: a(n) = (1/2)*n^4 + (7/3)*n^3 + 4*n^2 + (19/6)*n + 1
n=2: a(n) = (23/60)*n^5 + (9/4)*n^4 + (21/4)*n^3 + (25/4)*n^2 + (58/15)*n + 1
n=3: [polynomial of degree 6]
n=4: [polynomial of degree 7]
n=5: [polynomial of degree 8]
n=6: [polynomial of degree 9]
n=7: [polynomial of degree 10]

A120118 a(n) is the number of binary strings of length n such that no subsequence of length 5 or less contains 3 or more ones.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 26, 43, 71, 116, 186, 300, 487, 792, 1287, 2087, 3382, 5484, 8898, 14438, 23423, 37993, 61625, 99965, 162165, 263065, 426736, 692229, 1122903, 1821538, 2954849, 4793266, 7775472, 12613097, 20460538, 33190414, 53840404
Offset: 0

Views

Author

Tanya Khovanova, Aug 15 2006, Oct 11 2006

Keywords

Examples

			This sequence is similar to A118647 - where no subsequence of length 4 contains 3 ones. It is obvious that the first 4 terms of these two sequences are the same. There are only 3 sequences of length 5 that contain 3 ones such that no subsequence of length 4 contains 3 ones: 10101, 11001, 10011. Hence the fifth term for this sequence is 3 less than the corresponding term of A118647.
		

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( 1 +x*(1 +x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5+x^8+x^10) )); // G. C. Greubel, May 05 2023
    
  • Mathematica
    LinearRecurrence[{1,0,1,0,2,0,0,-1,0,-1}, {1,2,4,7,11,16,26,43,71,116, 186}, 50] (* Harvey P. Dale, Nov 27 2013 *)
  • SageMath
    def A120118_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( 1 +x*(1+x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5 +
         x^8+x^10) ).list()
    A120118_list(40) # G. C. Greubel, May 05 2023

Formula

a(n) = a(n-1) + a(n-3) + 2*a(n-5) - a(n-8) - a(n-10).
G.f.: 1 + x*(1+x+x^2)*(2+x^2+x^3-x^4-x^5-x^7)/(1-x-x^3-2*x^5+x^8+x^10). - R. J. Mathar, Nov 28 2011

A118646 a(n) is the number of binary strings of length n such that there exists a subsequence of length 4 containing 3 or more ones.

Original entry on oeis.org

0, 0, 1, 5, 13, 31, 71, 159, 346, 739, 1559, 3258, 6756, 13922, 28547, 58300, 118668, 240880, 487835, 986085, 1990025, 4010658, 8073786, 16237521, 32629241, 65522823, 131498801, 263774439, 528880599, 1060044148, 2124001923
Offset: 1

Views

Author

Tanya Khovanova, May 10 2006, Aug 17 2006

Keywords

Comments

Or there are 3 ones in a row - this is relevant only for a(3).
Complementary to A118647, namely a(n) = 2^(n+3) - A118647(n).

Examples

			a(4) is 5 because only the following binary strings of length 4 satisfy the conditions: 0111, 1011, 1101, 1011, 1111.
		

Crossrefs

Cf. A118647.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0,0] cat Coefficients( R!( x^3*(1+2*x-x^2-x^3)/((1-2*x)*(1-x-x^2-x^4+x^6)) )); // G. C. Greubel, May 05 2023
    
  • Mathematica
    LinearRecurrence[{3,-1,-2,1,-2,-1,2}, {0,0,1,5,13,31,71}, 41] (* G. C. Greubel, May 05 2023 *)
  • SageMath
    def A118646_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( x^3*(1+2*x-x^2-x^3)/((1-2*x)*(1-x-x^2-x^4+x^6)) ).list()
    a=A118646_list(41); a[1:] # G. C. Greubel, May 05 2023

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) - a(n-6) + 13*2^(n-6).
a(n) = +3*a(n-1) -a(n-2) -2*a(n-3) +a(n-4) -2*a(n-5) -a(n-6) +2*a(n-7).
G.f.: x^3*(1+2*x-x^2-x^3)/( (1-2*x)*(1-x-x^2-x^4+x^6) ). - R. J. Mathar, Nov 28 2011

A334251 a(n) is the number of binary (0,1) sequences of length n that have at most two zeros in a window of seven consecutive symbols.

Original entry on oeis.org

1, 2, 4, 7, 11, 16, 22, 29, 43, 66, 102, 157, 239, 358, 526, 777, 1159, 1740, 2619, 3942, 5923, 8870, 13259, 19822, 29667, 44451, 66641, 99912, 149745, 224338, 335993, 503199, 753720, 1129164, 1691796, 2534807, 3797721, 5689507, 8523275, 12768309, 19127928, 28655867, 42930562
Offset: 0

Views

Author

Kees Immink, Apr 20 2020

Keywords

Comments

Application: Not all electronic devices connected to the Internet of Things (IoT) have batteries or are connected to the power cable. These self-contained devices must rely on the harvesting of energy of the signals sent by a transmitter. We investigate binary systems emitting 0's and 1's signals where it is assumed that the 1's carry the energy. A minimal number of 1's in transmitted sequences is required so as to carry sufficient energy within a prescribed time span. A binary sequence is said to obey the sliding-window (ell,t)-constraint if the number of 1's within any window of ell consecutive bits of that sequence is at least t, t

Examples

			a(3) = 7 as there are 8 possible binary (0,1) sequences of length 3 but exactly one of them has more than 2 zero's in a window of seven consecutive symbols (the sequence (000)) leaving 8-1 = 7 such sequences. - _David A. Corneth_, Apr 20 2020
		

Crossrefs

Formula

G.f.: (x^20 +x^19 +x^18 +2*x^17 +2*x^16 +x^15 -3*x^13 -4*x^12 -5*x^11 -7*x^10 -5*x^9 -3*x^8 -3*x^7 +2*x^6 +3*x^5 +3*x^4 +3*x^3 +2*x^2 +x +1) / (-x^21 -x^18 +x^15 +3*x^14 +x^12 +2*x^11 -3*x^7 -x^4 -x +1).
From David A. Corneth, Apr 21 2020: (Start)
a(n) ~ c*r^n where c = 1.81880731105 and r = 1.498122533939865577.
a(n) = a(n - 1) + a(n - 4) + 3*a(n - 6) - 2*a(n - 10) - a(n - 12) - 3*a(n - 13) - a(n - 15) + a(n - 18) + a(n - 21), n >= 21. (End)

A335247 a(n) is the number of binary (0,1) sequences of length n that have at least two ones in each window of eight consecutive symbols.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 127, 247, 487, 961, 1897, 3745, 7393, 14593, 28801, 56833, 112156, 221341, 436825, 862094, 1701380, 3357739, 6626611, 13077820, 25809478, 50935832, 100523529, 198386490, 391522260, 772682018, 1524913233, 3009466064, 5939279536, 11721362180
Offset: 0

Author

Kees Immink, May 28 2020

Keywords

Comments

Application: Not all electronic devices connected to the Internet of Things (IoT) have batteries or are connected to the power cable. These self-contained devices must rely on the harvesting of energy of the signals sent by a transmitter. A minimal number of 1's in transmitted sequences is required so as to carry sufficient energy within a prescribed time span. A binary sequence is said to obey the sliding-window (ell,t)-constraint if the number of 1's within any window of ell consecutive bits of that sequence is at least t, t

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[-(x^27 +x^26 -x^23 -x^22 -3*x^19 -5*x^18 -3*x^17 +3*x^15 +4*x^14 +2*x^13 +3*x^11 +5*x^10 +5*x^9 +3*x^8 -3*x^7 -3*x^6 -2*x^5 -x^4 -x^3 -x^2 -x -1) / (x^28 -x^24 -3*x^20 -3*x^19 +3*x^16 +2*x^15 +3*x^12 +4*x^11 +3*x^10 -3*x^8 -2*x^7 -x^6 -x^4 -x^3 -x^2 -x +1),{x,0,100}],x] (* Georg Fischer, Oct 26 2020 *)
    LinearRecurrence[{1,1,1,1,0,1,2,3,0,-3,-4,-3,0,0,-2,-3,0,0,3,3,0,0,0,1,0,0,0,-1},{1,2,4,8,16,32,64,127,247,487,961,1897,3745,7393,14593,28801,56833,112156,221341,436825,862094,1701380,3357739,6626611,13077820,25809478,50935832,100523529},40] (* Harvey P. Dale, Feb 21 2022 *)

Formula

G.f.: -(x^27+x^26-x^23-x^22-3*x^19-5*x^18-3*x^17+3*x^15+4*x^14+2*x^13 +3*x^11 +5*x^10+5*x^9+3*x^8-3*x^7-3*x^6-2*x^5-x^4-x^3-x^2-x-1) / (x^28-x^24-3*x^20 -3*x^19 +3*x^16 +2*x^15+3*x^12+4*x^11+3*x^10-3*x^8-2*x^7-x^6-x^4-x^3-x^2-x+1).
a(n) = a(n-1)+a(n-2)+a(n-3)+a(n-4)+a(n-6)+2*a(n-7)+3*a(n-8)-3*a(n-10) -4*a(n-11) -3*a(n-12) -2*a(n-15)-3*a(n-16)+3*a(n-19)+3*a(n-20)+a(n-24)-a(n-28), n>28.
a(n) ~ c*r^n where c = 1.07317641333 and r = 1.9735326811117101072.

A125513 a(n) is the number of binary strings of length n such that no subsequence of length 5 or less contains 4 or more ones.

Original entry on oeis.org

2, 4, 8, 15, 26, 48, 89, 165, 305, 561, 1034, 1908, 3521, 6496, 11982, 22101, 40770, 75210, 138741, 255934, 472117, 870911, 1606567, 2963628, 5466988, 10084919, 18603592, 34317946, 63306130, 116780470, 215424285, 397391986, 733066807
Offset: 1

Author

Tanya Khovanova, Dec 28 2006

Keywords

Crossrefs

This sequence is similar to the sequences A118647 (where no substring of length 4 contains 3 or more ones), because the number of ones we are checking for is one less than the length of a substring. It is also similar to A120118 (where no substring of length 5 contains 3 or more ones.).

Formula

a(n) = a(n-1) + a(n-2) + a(n-4) + 2a(n-5) - a(n-7) - a(n-10).
G.f.: x*(2+2*x+2*x^2+3*x^3+x^4-x^5-x^6-x^7-x^8-x^9)/(1-x-x^2-x^4-2*x^5+x^7+x^ 10) [From Maksym Voznyy (voznyy(AT)mail.ru), Jul 26 2009]

Extensions

G.f. proposed by Maksym Voznyy checked and corrected by R. J. Mathar, Sep 16 2009.

A130902 a(n) is the number of binary strings of length n such that there exist 4 or more ones in a subsequence of length 5 or less.

Original entry on oeis.org

0, 0, 0, 1, 6, 16, 39, 91, 207, 463, 1014, 2188, 4671, 9888, 20786, 43435, 90302, 186934, 385547, 792642, 1625035, 3323393, 6782041, 13813588, 28087444, 57023945, 115614136, 234117510, 473564782, 956961354, 1932059363, 3897575310, 7856867785, 15827584881
Offset: 0

Author

Tanya Khovanova, Sep 28 2007

Keywords

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3,-1,-2,1,0,-4,-1,2,0,-1,2},{0,0,0,1,6,16,39,91,207,463,1014},40] (* Harvey P. Dale, Jul 19 2020 *)

Formula

a(n) = 2^n - A125513(n).
G.f.: x^3*(-1-3*x+x^2+x^3-x^4+x^5+x^6) / ( (2*x-1)*(x^10+x^7-2*x^5-x^4-x^2-x+1) ). - R. J. Mathar, Nov 28 2011

Extensions

More terms from Matthew House, Dec 26 2016

A131283 a(n) is the number of binary strings of length n such that there exist 3 or more ones in a subsequence of length 5 or less.

Original entry on oeis.org

0, 0, 1, 5, 16, 38, 85, 185, 396, 838, 1748, 3609, 7400, 15097, 30681, 62154, 125588, 253246, 509850, 1025153, 2059159, 4132679, 8288643, 16615051, 33291367, 66682128, 133525499, 267312553, 535049374, 1070786975, 2142690382
Offset: 1

Author

Tanya Khovanova, Sep 28 2007

Keywords

Crossrefs

Programs

  • PARI
    concat([0, 0], Vec(x^3*(1+2*x+3*x^2-x^6-x^7-x^3-2*x^5) / ( (1-2*x)*(1-x-x^3-2*x^5+x^8+x^10) ) + O(x^40))) \\ Michel Marcus, May 28 2020

Formula

a(n) = 2^n - A120118(n).
a(n)= +3*a(n-1) -2*a(n-2) +a(n-3) -2*a(n-4) +2*a(n-5) -4*a(n-6) -a(n-8) +2*a(n-9) -a(n-10) +2*a(n-11).
G.f.: x^3*(1 +2*x +3*x^2 -x^6 -x^7 -x^3 -2*x^5) / ( (1-2*x)*(1-x-x^3-2*x^5+x^8+x^10) ). - R. J. Mathar, Nov 28 2011
Showing 1-9 of 9 results.