A118800 Triangle read by rows: T satisfies the matrix products: C*T*C = T^-1 and T*C*T = C^-1, where C is Pascal's triangle.
1, 1, -1, 2, -3, 1, 4, -8, 5, -1, 8, -20, 18, -7, 1, 16, -48, 56, -32, 9, -1, 32, -112, 160, -120, 50, -11, 1, 64, -256, 432, -400, 220, -72, 13, -1, 128, -576, 1120, -1232, 840, -364, 98, -15, 1, 256, -1280, 2816, -3584, 2912, -1568, 560, -128, 17, -1, 512, -2816, 6912, -9984, 9408, -6048, 2688, -816, 162, -19, 1
Offset: 0
Examples
Triangle begins: 1; 1, -1; 2, -3, 1; 4, -8, 5, -1; 8, -20, 18, -7, 1; 16, -48, 56, -32, 9, -1; 32, -112, 160, -120, 50, -11, 1; 64, -256, 432, -400, 220, -72, 13, -1; 128, -576, 1120, -1232, 840, -364, 98, -15, 1; 256, -1280, 2816, -3584, 2912, -1568, 560, -128, 17, -1; 512, -2816, 6912, -9984, 9408, -6048, 2688, -816, 162, -19, 1; 1024, -6144, 16640, -26880, 28800, -21504, 11424, -4320, 1140, -200, 21, -1; ... The matrix square, T^2, equals: 1; 0, 1; 1, 0, 1; 2, 1, 0, 1; 4, 2, 1, 0, 1; 8, 4, 2, 1, 0, 1; 16, 8, 4, 2, 1, 0, 1; 32, 16, 8, 4, 2, 1, 0, 1; 64, 32, 16, 8, 4, 2, 1, 0, 1; ... where all columns are the same.
Links
- Paul D. Hanna, Rows 0..45 of triangle, flattened.
- Florian Luca, Attila Pethő, and László Szalay, Duplications in the k-generalized Fibonacci sequences, New York J. Math. (2021) Vol. 27, 1115-1133.
Crossrefs
Programs
-
Mathematica
(* This program generates A118800 as the mirror of the self-fusion of Pascal's triangle. *) z = 8; a = 1; b = 1; c = 1; d = 1; p[n_, x_] := (a*x + b)^n ; q[n_, x_] := (c*x + d)^n; t[n_, k_] := Coefficient[p[n, x], x^k]; t[n_, 0] := p[n, 0]; w[n_, x_] := Sum[t[n, k]*q[n + 1 - k, x], {k, 0, n}]; w[-1, _] = 1; g[n_] := CoefficientList[w[n, -x], x]; TableForm[Table[Reverse[Abs@g[n]], {n, -1, z}]] Flatten[Table[Reverse[Abs@g[n]], {n, -1, z}]] (* A081277 *) TableForm[Table[g[n], {n, -1, z}]] Flatten[Table[g[n], {n, -1, z}]] (* A118800 *) (* Clark Kimberling, Aug 04 2011 *) T[ n_, k_] := If[ n<0 || k<0, 0, (-1)^k 2^(n-k) (Binomial[ n, k] + Binomial[ n-1, n-k]) / 2]; (* Michael Somos, Nov 25 2016 *)
-
PARI
{T(n,k)=if(n==0&k==0,1,(-1)^k*2^(n-k)*(binomial(n,k)+binomial(n-1,k-1))/2)} for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
-
PARI
/* Chebyshev Polynomials as Antidiagonals: */ {T(n,k)=local(Ox=x*O(x^(2*k))); polcoeff(((1+sqrt(1-x^2+Ox))^(n+k)+(1-sqrt(1-x^2+Ox))^(n+k))/2,2*k,x)} for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))
-
Sage
# uses[riordan_square from A321620] # Computes the unsigned triangle. riordan_square((1-x)/(1-2*x), 8) # Peter Luschny, Jan 03 2019
Formula
T(n,k) = (-1)^k * 2^(n-k) * ( C(n,k) + C(n-1,k-1) )/2 for n>=k>=0 with T(0,0) = 1. Antidiagonals form the coefficients of Chebyshev polynomials: T(n,k) = [x^(2*n)] [(1+sqrt(1-x^2))^(n+k) + (1-sqrt(1-x^2))^(n+k)]/2.
Rows of the triangle are generated by taking successive iterates of (A135387)^n * [1, 1, 0, 0, 0, ...]. - Gary W. Adamson, Dec 09 2007
O.g.f.: (1 - t)/(1 + t*(x - 2)) = 1 + (1 - x)*t + (2 - 3*x + x^2)^t^2 + (4 - 8*x + 5*x^2 - x^3)*t^3 + .... Row polynomial R(n,x) = (1 - x)*(2 - x)^(n-1) for n >= 1. - Peter Bala, Jul 17 2013
T(n,k)=2*T(n-1,k)-T(n-1,k-1) with T(0,0)=T(1,0)=1, T(1,1)=-1, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 25 2013
G.f. for row n (n>=1): Sum_{k=0..n} T(n,k)*x^k = (1-x)*(2-x)^(n-1). - Philippe Deléham, Nov 25 2013
From Tom Copeland, Nov 15 2016: (Start)
E.g.f. is [1 + (1-x)e^((2-x)t)]/(2-x), so the row polynomials are p_n(x) = (1-q,(x))^n, umbrally, where (q.(x))^k = q_k(x) are the row polynomials of A239473, or, equivalently, T = M*A239473, where M is the inverse Pascal matrix C^(-1) = A130595 with the odd rows negated, i.e., M(n,k) = (-1)^n C^(-1)(n,k) with e.g.f. exp[(1-x)t]. Cf. A200139: A200139(n,k) = (-1)^k* A118800(n,k).
Comments