cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A233940 Number T(n,k) of binary words of length n with exactly k (possibly overlapping) occurrences of the subword given by the binary expansion of n; triangle T(n,k), n>=0, read by rows.

Original entry on oeis.org

1, 1, 1, 3, 1, 5, 2, 1, 12, 4, 21, 10, 1, 33, 30, 1, 81, 26, 13, 5, 2, 1, 177, 78, 1, 338, 156, 18, 667, 278, 68, 10, 1, 1178, 722, 142, 6, 2031, 1827, 237, 1, 4105, 3140, 862, 84, 1, 6872, 7800, 1672, 40, 20569, 5810, 3188, 1662, 829, 394, 181, 80, 35, 12, 5, 2, 1
Offset: 0

Views

Author

Alois P. Heinz, Dec 18 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the positive terms.

Examples

			T(3,0) = 5: 000, 001, 010, 100, 101 (subword 11 is avoided).
T(3,1) = 2: 011, 110 (exactly one occurrence of 11).
T(3,2) = 1: 111 (two overlapping occurrences of 11).
Triangle T(n,k) begins:
: n\k :   0    1   2   3  4  5 ...
+-----+------------------------
:  0  :   1;                       [row  0 of A007318]
:  1  :   1,   1;                  [row  1 of A007318]
:  2  :   3,   1;                  [row  2 of A034867]
:  3  :   5,   2,  1;              [row  3 of A076791]
:  4  :  12,   4;                  [row  4 of A118424]
:  5  :  21,  10,  1;              [row  5 of A118429]
:  6  :  33,  30,  1;              [row  6 of A118424]
:  7  :  81,  26, 13,  5, 2, 1;    [row  7 of A118390]
:  8  : 177,  78,  1;              [row  8 of A118884]
:  9  : 338, 156, 18;              [row  9 of A118890]
: 10  : 667, 278, 68, 10, 1;       [row 10 of A118869]
		

Crossrefs

Columns k=0-10 give: A234005 (or main diagonal of A209972), A229905, A236231, A236232, A236233, A236234, A236235, A236236, A236237, A236238, A236239.
T(2^n-1,2^n-2n+1) = A045623(n-1) for n>0.
Last elements of rows give A229293.
Row sums give A000079.

Programs

  • Maple
    F:= proc(n)
    local w, L, s,b,s0,R,j,T,p,y,m,ymax;
    w:= ListTools:-Reverse(convert(n,base,2));
    L:= nops(w);
    for s from 0 to L-1 do
      for b from 0 to 1 do
       s0:= [op(w[1..s]),b];
       if s0 = w then R[s,b]:= 1
       else R[s,b]:= 0
       fi;
       for j from min(nops(s0),L-1) by -1 to 0 do
          if s0[-j..-1] = w[1..j] then
            T[s,b]:= j;
            break
          fi
       od;
    od;
    od;
    for s from L-1 by -1 to 0 do
      p[0,s,n]:= 1:
      for y from 1 to n do
         p[y,s,n]:= 0 od od;
    for m from n-1 by -1 to 0 do
       for s from L-1 by -1 to 0 do
          for y from 0 to n do
            p[y,s,m]:= `if`(y>=R[s,0],1/2*p[y-R[s,0],T[s,0],m+1],0)
                      +
    `if`(y>=R[s,1],1/2*p[y-R[s,1],T[s,1],m+1],0)
    od od od:
    ymax:= ListTools:-Search(0,[seq(p[y,0,0],y=0..n)])-2;
    seq(2^n*p[y,0,0],y=0..ymax);
    end proc:
    F(0):= 1:
    F(1):= (1,1):
    for n from 0 to 30 do F(n) od; # Robert Israel, May 22 2015
  • Mathematica
    (* This program is not convenient for a large number of rows *) count[word_List, subword_List] := Module[{cnt = 0, s1 = Sequence @@ subword, s2 = Sequence @@ Rest[subword]}, word //. {a___, s1, b___} :> (cnt++; {a, 2, s2, b}); cnt]; t[n_, k_] := Module[{subword, words}, subword = IntegerDigits[n, 2]; words = PadLeft[IntegerDigits[#, 2], n] & /@ Range[0, 2^n - 1]; Select[words, count[#, subword] == k &] // Length]; row[n_] := Reap[For[k = 0, True, k++, tnk = t[n, k]; If[tnk == 0, Break[], Sow[tnk]]]][[2, 1]]; Table[Print["n = ", n, " ", r = row[n]]; r, {n, 0, 15}] // Flatten (* Jean-François Alcover, Feb 13 2014 *)

Formula

Sum_{k>0} k*T(n,k) = A228612(n).

A049864 a(n) = Sum_{k=0,1,2,...,n-4,n-2,n-1} a(k); a(n-3) is not a summand, with a(0)=a(1)=a(2)=1.

Original entry on oeis.org

1, 1, 1, 2, 4, 8, 15, 28, 52, 97, 181, 338, 631, 1178, 2199, 4105, 7663, 14305, 26704, 49850, 93058, 173717, 324288, 605368, 1130077, 2109583, 3938086, 7351463, 13723420, 25618337, 47823297, 89274637, 166654357, 311103754, 580756168, 1084132616, 2023815835
Offset: 0

Views

Author

Keywords

Comments

Number of binary sequences of length n-2 with no subsequence 0110. E.g., a(7)=28 because among the 32 (=2^5) binary sequences of length 5 only 01100,01101,00110 and 10110 contain the subsequence 0110. - Emeric Deutsch, May 04 2006
This is a_3(n) in the Doroslovacki reference. - Max Alekseyev, Jun 26 2007
Column 0 of A118890. - Emeric Deutsch, May 04 2006

Crossrefs

Programs

  • Maple
    (With a different offset:) a[0]:=1:a[1]:=2:a[2]:=4:a[3]:=8: for n from 4 to 35 do a[n]:=2*a[n-1]-a[n-3]+a[n-4] od: seq(a[n],n=0..35); # Emeric Deutsch, May 04 2006
  • Mathematica
    LinearRecurrence[{2,0,-1,1},{1,1,1,2},40] (* Harvey P. Dale, Sep 24 2013 *)

Formula

a(n) = 2*a(n-1) - a(n-3) + a(n-4).
G.f.: (1+z)*(1-z)^2/(1 - 2z + z^3 - z^4). - Emeric Deutsch, May 04 2006

Extensions

Edited by N. J. A. Sloane, Nov 16 2007, at the suggestion of Max Alekseyev

A118892 Number of binary sequences of length n containing exactly one subsequence 0110.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 12, 30, 70, 156, 339, 722, 1515, 3140, 6444, 13116, 26513, 53280, 106530, 212062, 420503, 830964, 1637055, 3216240, 6303099, 12324816, 24049953, 46841550, 91074760, 176796340, 342696000, 663363750, 1282457260, 2476394580
Offset: 0

Views

Author

Emeric Deutsch, May 04 2006

Keywords

Comments

Column 1 of A118890. Convolution of A059633 with itself (disregard the 0 terms).

Examples

			a(5)=4 because we have 01100,01101,00110 and 10110.
		

Crossrefs

Programs

  • Maple
    G:=z^4/(1-2*z+z^3-z^4)^2: Gser:=series(G,z=0,37): seq(coeff(Gser,z,n),n=0..34);

Formula

G.f.=z^4/(1-2z+z^3-z^4)^2.
+(-n+4)*a(n) +2*(n-3)*a(n-1) +(-n+1)*a(n-3) +n*a(n-4)=0. - R. J. Mathar, Jul 26 2022
Showing 1-3 of 3 results.