A005251 a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).
0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521
Offset: 0
Examples
From _Joerg Arndt_, Jan 26 2013: (Start) The a(5+2) = 12 compositions of 5 where no two adjacent parts are != 1 are [ 1] [ 1 1 1 1 1 ] [ 2] [ 1 1 1 2 ] [ 3] [ 1 1 2 1 ] [ 4] [ 1 1 3 ] [ 5] [ 1 2 1 1 ] [ 6] [ 1 3 1 ] [ 7] [ 1 4 ] [ 8] [ 2 1 1 1 ] [ 9] [ 2 1 2 ] [10] [ 3 1 1 ] [11] [ 4 1 ] [12] [ 5 ] (End) G.f. = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 21*x^8 + 37*x^9 + ...
References
- S. Burckel, Efficient methods for three strand braids (submitted). [Apparently unpublished]
- P. Chinn and S. Heubach, "Compositions of n with no occurrence of k", Congressus Numeratium, 2002, v. 162, pp. 33-51.
- John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205.
- R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Links
- T. D. Noe, Table of n, a(n) for n = 0..500
- Kassie Archer, Ethan Borsh, Jensen Bridges, Christina Graves, and Millie Jeske, Cyclic permutations avoiding patterns in both one-line and cycle forms, arXiv:2312.05145 [math.CO], 2023. See p. 2.
- Andrei Asinowski and Cyril Banderier, On Lattice Paths with Marked Patterns: Generating Functions and Multivariate Gaussian Distribution, 31st International Conference on Probabilistic, Combinatorial and Asymptotic Methods for the Analysis of Algorithms (AofA 2020) Leibniz International Proceedings in Informatics (LIPIcs) Vol. 159, 1:1-1:16.
- R. Austin and R. K. Guy, Binary sequences without isolated ones, Fib. Quart., 16 (1978), 84-86.
- J.-L. Baril, Avoiding patterns in irreducible permutations, Discrete Mathematics and Theoretical Computer Science, Vol 17, No 3 (2016). See Table 4.
- Jean-Luc Baril, Sergey Kirgizov and Armen Petrossian, Enumeration of Łukasiewicz paths modulo some patterns, arXiv:1804.01293 [math.CO], 2018.
- N. Bergeron, S. Mykytiuk, F. Sottile and S. van Willigenburg, Shifted quasisymmetric functions and the Hopf algebra of peak functions, arXiv:math/9904105 [math.CO], 1999.
- D. Birmajer, J. B. Gil, and M. D. Weiner, On the Enumeration of Restricted Words over a Finite Alphabet, J. Int. Seq. 19 (2016) # 16.1.3, Example 11.
- A. Blecher, C. Brennan, A. Knopfmacher and H. Prodinger, The height and width of bargraphs, Discrete Applied Math. 180, (2015), 36-44.
- A. Brousseau, Fibonacci and Related Number Theoretic Tables, Fibonacci Association, San Jose, CA, 1972, p. 112.
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Properties of a Ternary Infinite Word, arXiv:2206.01776 [cs.DM], 2022.
- James Currie, Pascal Ochem, Narad Rampersad, and Jeffrey Shallit, Complement Avoidance in Binary Words, arXiv:2209.09598 [math.CO], 2022.
- J. Demetrovics et al., On the number of unions in a family of sets, in Combinatorial Math., Proc. 3rd Internat. Conf., Annals NY Acad. Sci., 555 (1989), 150-158.
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
- Nazim Fatès, Biswanath Sethi, and Sukanta Das, On the Reversibility of ECAs with Fully Asynchronous Updating: The Recurrence Point of View, in Reversibility and Universality, Andrew Adamatzky, editor, Emergence, Complexity and Computation Vol. 30. Springer, 2018.
- Steven Finch, Cantor-solus and Cantor-multus distributions, arXiv:2003.09458 [math.CO], 2020.
- R. L. Graham and N. J. A. Sloane, Anti-Hadamard matrices, Linear Alg. Applic., 62 (1984), 113-137.
- R. K. Guy, Letter to N. J. A. Sloane, Feb 1986
- R. K. Guy, Anyone for Twopins?, in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15. [Annotated scanned copy, with permission]
- V. C. Harris and C. C. Styles, A generalization of Fibonacci numbers, Fib. Quart. 2 (1964) 277-289, sequence u(n,1,2).
- V. E. Hoggatt, Jr., 7-page typed letter to N. J. A. Sloane with suggestions for new sequences, circa 1977.
- INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 98
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- Vedran Krcadinac, A new generalization of the golden ratio, Fibonacci Quart. 44 (2006), no. 4, 335-340.
- Erkko Lehtonen and Tamás Waldhauser, Associative spectra of graph algebras II. Satisfaction of bracketing identities, spectrum dichotomy, arXiv:2011.08522 [math.CO], 2020.
- J. J. Madden, A generating function for the distribution of runs in binary words, arXiv:1707.04351 [math.CO], 2017, Theorem 1.1, r=2, k=0.
- T. Mansour and M. Shattuck, Counting Peaks and Valleys in a Partition of a Set, J. Int. Seq. 13 (2010), 10.6.8, Lemma 2.1, k=2, 0 peaks.
- Denis Neiter and Amsha Proag, Links Between Sums Over Paths in Bernoulli's Triangles and the Fibonacci Numbers, Journal of Integer Sequences, Vol. 19 (2016), Article 16.8.3.
- Nicolas Ollinger and Jeffrey Shallit, The Repetition Threshold for Rote Sequences, arXiv:2406.17867 [math.CO], 2024.
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
- A. G. Shannon, Some recurrence relations for binary sequence matrices, NNTDM 17 (2011), 4, 913.
- Bojan Vučković and Miodrag Živković, Row Space Cardinalities Above 2^(n - 2) + 2^(n - 3), ResearchGate, January 2017, p. 3.
- Index entries for linear recurrences with constant coefficients, signature (2,-1,1).
Crossrefs
Cf. A001608, A004148, A005314, A006498, A011973, A049864, A049853, A078065, A118891, A173022, A176971, A178470, A261041, A303696, A329871, A384153.
Bisection of Padovan sequence A000931.
Compositions without adjacent equal parts are A003242.
Compositions without isolated parts are A114901.
Row sums of A097230(n-2) for n>1.
Programs
-
Haskell
a005251 n = a005251_list !! n a005251_list = 0 : 1 : 1 : 1 : zipWith (+) a005251_list (drop 2 $ zipWith (+) a005251_list (tail a005251_list)) -- Reinhard Zumkeller, Dec 28 2011
-
Magma
I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..45]]; // Vincenzo Librandi, Nov 30 2018
-
Magma
R
:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)/(1-2*x + x^2 - x^3) )); // Marius A. Burtea, Oct 24 2019 -
Maple
A005251 := proc(n) option remember; if n <= 2 then n elif n = 3 then 4 else 2*A005251(n - 1) - A005251(n - 2) + A005251(n - 3); fi; end; A005251:=(-1+z)/(-1+2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation a := n -> `if`(n<=1, n, hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4)): seq(simplify(a(n)), n=0..36); # Peter Luschny, Apr 08 2018
-
Mathematica
LinearRecurrence[{2,-1,1},{0,1,1},40] (* Harvey P. Dale, May 05 2011 *) a[ n_]:= If[n<0, SeriesCoefficient[ -x(1-x)/(1 -x + 2x^2 -x^3), {x, 0, -n}], SeriesCoefficient[ x(1-x)/(1 -2x +x^2 -x^3), {x, 0, n}]] (* Michael Somos, Dec 13 2013 *) a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n-2] + a[n-3]; Table[a[2 n-1], {n, 1, 20}] (* Rigoberto Florez, Oct 15 2019 *) Table[If[n==0,0,Length[DeleteCases[Subsets[Range[n-3]],{_,x_,y_,_}/;x+2==y]]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
-
PARI
Vec((1-x)/(1-2*x+x^2-x^3)+O(x^99)) /* Charles R Greathouse IV, Nov 20 2012 */
-
PARI
{a(n) = if( n<0, polcoeff( -x*(1-x)/(1 -x +2*x^2 -x^3) + x*O(x^-n), -n), polcoeff( x*(1-x)/(1 -2*x +x^2 -x^3) + x*O(x^n), n))} /* Michael Somos, Dec 13 2013 */
-
SageMath
[sum( binomial(n-j-1, 2*j) for j in (0..floor((n-1)/3)) ) for n in (0..50)] # G. C. Greubel, Apr 13 2022
Formula
a(n) = 2*a(n-1) - a(n-2) + a(n-3).
G.f.: z*(1-z)/(1 - 2*z + z^2 - z^3). - Emeric Deutsch, Sep 13 2004
23*a_n = 3*P_{2n+1} + 7*P_{2n} - 2*P_{2n-1}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
a(n+1) = Sum_{k=0..n} binomial(n-k, 2k). - Richard L. Ollerton, May 12 2004
From Henry Bottomley, Feb 21 2001: (Start)
a(n) = (Sum_{j
a(n) = A049853(n-1) - a(n-1).
a(n) = A005314(n) - a(n-2). (End)
a(n+2) has g.f. (F_3(-x) + F_2(-x))/(F_4(-x) + F_3(-x)) = 1/(-x+1/(-x+1/(-x+1))) where F_n(x) is the n-th Fibonacci polynomial; see A011973. - Qiaochu Yuan (qchu(AT)mit.edu), Feb 19 2009
a(n) = A173022(2^(n-2) - 1) for n > 1. - Reinhard Zumkeller, Feb 07 2010
BINOMIAL transform of A176971 is a(n+1). - Michael Somos, Dec 13 2013
a(n) = hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4) for n > 1. - Peter Luschny, Apr 08 2018
G.f.: z/(1-z-z^3-z^4-z^5-...) for the compositions of n-1 avoiding 2. The g.f. for the number of compositions of n avoiding the part k is 1/(1-z-...-z^(k-1) - z^(k+1)-...). - Gregory L. Simay, Sep 09 2018
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = (p-1)*p^n/((p-q)*(p-r)) + (q-1)*q^n/((q-p)*(q-r)) + (r-1)*r^n/((r-p)*(r-q)). - Greg Dresden and AnXing Yang, Aug 12 2025
A209972 Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0
Examples
Square array begins: 1, 1, 1, 1, 1, 1, 1, 1, 1, ... 1, 1, 2, 2, 2, 2, 2, 2, 2, ... 1, 1, 3, 3, 4, 4, 4, 4, 4, ... 1, 1, 4, 5, 7, 7, 7, 7, 8, ... 1, 1, 5, 8, 12, 12, 12, 13, 15, ... 1, 1, 6, 13, 20, 21, 20, 24, 28, ... 1, 1, 7, 21, 33, 37, 33, 44, 52, ... 1, 1, 8, 34, 54, 65, 54, 81, 96, ... 1, 1, 9, 55, 88, 114, 88, 149, 177, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..150, flattened
Crossrefs
Columns give: 0, 1: A000012, 2: A001477(n+1), 3: A000045(n+2), 4, 6: A000071(n+3), 5: A005251(n+3), 7: A000073(n+3), 8, 12, 14: A008937(n+1), 9, 11, 13: A049864(n+2), 10: A118870, 15: A000078(n+4), 16, 20, 24, 26, 28, 30: A107066, 17, 19, 23, 25, 29: A210003, 18, 22: A209888, 21: A152718(n+3), 27: A210021, 31: A001591(n+5), 32: A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61: A210031.
Programs
-
Mathematica
A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt]; Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)
A189343 T(n,k)=Number of nXk binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.
2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 52, 784, 3375, 3375, 784, 52, 97, 2704, 21952, 36626, 21952, 2704, 97, 181, 9409, 140608, 390721, 390721, 140608, 9409, 181, 338, 32761, 912673, 3988168, 6814820, 3988168, 912673, 32761, 338, 631
Offset: 1
Comments
Table starts
...2......4.........8..........15............28...............52
...4.....16........64.........225...........784.............2704
...8.....64.......512........3375.........21952...........140608
..15....225......3375.......36626........390721..........3988168
..28....784.....21952......390721.......6814820........109746642
..52...2704....140608.....3988168.....109746642.......2650369322
..97...9409....912673....42069350....1857004061......68439605144
.181..32761...5929741...442969881...31177656076....1732402041622
.338.114244..38614472..4709354541..533269057178...45288523287014
.631.398161.251239591.49857094654.9053472938552.1169200527259744
Examples
Some solutions for 6X4 ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0 ..0..0..0..1....0..0..1..0....0..0..0..0....0..0..0..0....0..0..0..1 ..0..1..0..1....0..1..0..0....0..0..1..1....1..0..0..0....1..0..1..1 ..0..1..1..1....0..1..1..0....0..1..1..1....0..0..1..1....0..0..0..0 ..0..1..1..0....1..1..0..1....0..0..1..0....1..0..0..0....0..0..1..1 ..0..1..1..1....0..0..1..1....0..0..0..1....1..0..0..0....0..0..1..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..127
Crossrefs
A189779 T(n,k)=Number of nXk binary arrays without the pattern 1 0 0 1 diagonally, vertically or horizontally.
2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 52, 784, 3375, 3375, 784, 52, 97, 2704, 21952, 37976, 21952, 2704, 97, 181, 9409, 140608, 418550, 418550, 140608, 9409, 181, 338, 32761, 912673, 4461435, 7767740, 4461435, 912673, 32761, 338, 631
Offset: 1
Comments
Table starts
...2......4.........8..........15.............28...............52
...4.....16........64.........225............784.............2704
...8.....64.......512........3375..........21952...........140608
..15....225......3375.......37976.........418550..........4461435
..28....784.....21952......418550........7767740........136521398
..52...2704....140608.....4461435......136521398.......3848548036
..97...9409....912673....48633913.....2475199422.....112831587094
.181..32761...5929741...530389481....44835555921....3292640179737
.338.114244..38614472..5817065520...819898395901...97500493294819
.631.398161.251239591.63680392402.14951509967629.2875530570969513
Examples
Some solutions for 7X5 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0 ..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0 ..0..1..0..0..0....0..1..0..0..0....1..1..0..0..0....1..1..0..0..0 ..0..1..0..0..0....0..0..0..0..0....1..1..0..0..0....1..1..0..0..0 ..1..1..0..1..0....1..1..1..1..0....0..0..0..1..0....1..1..1..0..0 ..0..0..1..1..1....1..0..0..0..0....0..1..0..1..0....1..0..0..0..0 ..0..0..1..0..1....1..1..1..0..1....0..0..1..0..0....0..1..1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..199
A118890 Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0110 (n,k >= 0).
1, 2, 4, 8, 15, 1, 28, 4, 52, 12, 97, 30, 1, 181, 70, 5, 338, 156, 18, 631, 339, 53, 1, 1178, 722, 142, 6, 2199, 1515, 357, 25, 4105, 3140, 862, 84, 1, 7663, 6444, 2018, 252, 7, 14305, 13116, 4614, 700, 33, 26704, 26513, 10348, 1846, 124, 1, 49850, 53280, 22844
Offset: 0
Comments
Examples
T(8,2) = 5 because we have 01100110, 01101100, 01101101, 00110110 and 10110110. Triangle starts: 1; 2; 4; 8; 15, 1; 28, 4; 52, 12; 97, 30, 1; 181, 70, 5; 338, 156, 18; 631, 339, 53, 1;
Links
- Alois P. Heinz, Rows n = 0..250, flattened
Programs
-
Maple
G:=(1+(1-t)*z^3)/(1-2*z+(1-t)*(1-z)*z^3): Gser:=simplify(series(G,z=0,24)): P[0]:=1: for n from 1 to 18 do P[n]:=sort(coeff(Gser,z^n)) od: 1; for n from 1 to 18 do seq(coeff(P[n],t,j),j=0..ceil(n/3)-1) od; # yields sequence in triangular form
-
Mathematica
nn=18;c=x^3;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)),{x,0,nn}],{x,y}]]//Flatten (* Geoffrey Critzer, Dec 25 2013 *)
Formula
G.f.: G(t,z) = (1+(1-t)z^3)/(1 - 2z + (1-t)(1-z)z^3).
A049858 a(n) = Sum{a(k): k=0,1,2,...,n-4,n-2,n-1}; a(n-3) is not a summand; initial terms are 0,1,2.
0, 1, 2, 3, 5, 9, 17, 32, 60, 112, 209, 390, 728, 1359, 2537, 4736, 8841, 16504, 30809, 57513, 107363, 200421, 374138, 698426, 1303794, 2433871, 4543454, 8481540, 15833003, 29556423, 55174760, 102998057, 192272694, 358927051, 670030805, 1250786973, 2334919589
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (2,0,-1,1).
Programs
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; 1,-1,0,2]^n*[0;1;2;3])[1,1] \\ Charles R Greathouse IV, Aug 16 2017
Formula
a(n) = 2*a(n-1) -a(n-3) +a(n-4).
G.f. x*(x-1)*(1+x) / ( -1+2*x-x^3+x^4 ). - R. J. Mathar, Nov 12 2012
A118891 Number of binary sequences of length n with no subsequence 01110.
1, 2, 4, 8, 16, 31, 60, 116, 223, 428, 820, 1569, 3002, 5744, 10992, 21039, 40273, 77095, 147588, 282538, 540881, 1035440, 1982194, 3794602, 7264164, 13906079, 26620957, 50961552, 97557726, 186758657, 357519595, 684414146, 1310201570
Offset: 0
Keywords
Comments
This is a_4(n) in the Doroslovacki reference.
Links
- R. Doroslovacki, Binary sequences without 011...110 (k-1 1's) for fixed k, Mat. Vesnik 46 (1994), no. 3-4, 93-98.
Programs
-
PARI
{ a4(n) = 1 + sum(i=1,n, sum(j=0,n-i, sum(k=0,(n-i-j)\2, sum(l=0,(n-i-j-2*k)\4, binomial(i-1,j)*binomial(i-1-j,k)*binomial(i-1-j-2*k,l)*binomial(n-i-j-2*k-3*l+1,l+1))))) }
Formula
Empirical g.f.: -(x^8+x^7-x^5+2*x^4-x+1) / (x^9-x^7-x^6+4*x^5-2*x^4-2*x^2+3*x-1). - Colin Barker, Aug 11 2013
Extensions
More terms from Max Alekseyev, Sep 25 2009
A118892 Number of binary sequences of length n containing exactly one subsequence 0110.
0, 0, 0, 0, 1, 4, 12, 30, 70, 156, 339, 722, 1515, 3140, 6444, 13116, 26513, 53280, 106530, 212062, 420503, 830964, 1637055, 3216240, 6303099, 12324816, 24049953, 46841550, 91074760, 176796340, 342696000, 663363750, 1282457260, 2476394580
Offset: 0
Keywords
Examples
a(5)=4 because we have 01100,01101,00110 and 10110.
Links
- Index entries for linear recurrences with constant coefficients, signature (4,-4,-2,6,-4,-1,2,-1)
Programs
-
Maple
G:=z^4/(1-2*z+z^3-z^4)^2: Gser:=series(G,z=0,37): seq(coeff(Gser,z,n),n=0..34);
Formula
G.f.=z^4/(1-2z+z^3-z^4)^2.
+(-n+4)*a(n) +2*(n-3)*a(n-1) +(-n+1)*a(n-3) +n*a(n-4)=0. - R. J. Mathar, Jul 26 2022
A189336 Number of nX2 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.
4, 16, 64, 225, 784, 2704, 9409, 32761, 114244, 398161, 1387684, 4835601, 16851025, 58721569, 204633025, 713103616, 2485022500, 8659791364, 30177596089, 105162706944, 366470415424, 1277074025929, 4450340433889, 15508521343396
Offset: 1
Keywords
Comments
Column 2 of A189343
Examples
Some solutions for 4X2 ..0..0....1..0....1..0....0..0....1..0....0..1....0..0....0..1....1..1....0..0 ..1..1....1..0....0..0....1..0....1..0....0..1....1..1....1..0....0..1....1..1 ..0..0....1..0....1..0....0..1....0..1....0..1....1..0....0..1....1..0....1..1 ..0..1....0..1....1..1....0..1....1..1....0..0....0..1....1..0....0..1....1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
A049864(n+2) squared
Formula
Empirical: a(n) = 4*a(n-1) -a(n-2) -6*a(n-3) +12*a(n-4) -3*a(n-5) +3*a(n-6) -6*a(n-7) +a(n-8) -a(n-9) +a(n-10)
A189337 Number of nX3 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.
8, 64, 512, 3375, 21952, 140608, 912673, 5929741, 38614472, 251239591, 1634691752, 10633486599, 69173457625, 449983383247, 2927275422625, 19042718961664, 123878371625000, 805862864751112, 5242361459792813, 34103003909455872
Offset: 1
Keywords
Comments
Column 3 of A189343
Examples
Some solutions for 4X3 ..0..1..0....0..0..0....0..0..1....0..0..0....1..1..1....1..0..1....1..1..0 ..0..1..1....1..1..1....1..1..0....0..0..0....1..0..1....0..1..1....1..1..1 ..0..1..1....0..0..1....0..1..0....0..0..0....1..1..0....1..0..1....0..1..1 ..1..1..1....0..0..0....1..0..0....0..1..0....0..1..1....0..0..1....1..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
A049864(n+2) cubed
Formula
Empirical: a(n) = 7*a(n-1) -41*a(n-3) +130*a(n-4) +81*a(n-6) -369*a(n-7) -73*a(n-8) -173*a(n-9) +243*a(n-10) +211*a(n-11) -77*a(n-12) +117*a(n-13) +81*a(n-14) +20*a(n-16) +13*a(n-17) +a(n-19) +a(n-20)
Comments