cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A005251 a(0) = 0, a(1) = a(2) = a(3) = 1; thereafter, a(n) = a(n-1) + a(n-2) + a(n-4).

Original entry on oeis.org

0, 1, 1, 1, 2, 4, 7, 12, 21, 37, 65, 114, 200, 351, 616, 1081, 1897, 3329, 5842, 10252, 17991, 31572, 55405, 97229, 170625, 299426, 525456, 922111, 1618192, 2839729, 4983377, 8745217, 15346786, 26931732, 47261895, 82938844, 145547525, 255418101, 448227521
Offset: 0

Views

Author

Keywords

Comments

a(n+3) is the number of n-bit sequences that avoid 010. Example: For n=4 the 12 sequences are all 4-bit sequences except 0100, 0101, 0010, 1010. - David Callan, Mar 25 2004
a(n+2) is the number of compositions (ordered partitions) of n where no two adjacent parts are != 1, see example. - Joerg Arndt, Jan 26 2013
a(n+1) is the number of compositions of n avoiding the part 2. - Joerg Arndt, Jul 13 2014
Number of different positive braids with n crossings of 3 strands.
This is a_2(n) in the Doroslovacki reference. Note that there is a typo in the paper in the formula for a_2(n): the upper bound in the inner sum should be "n-i" not "i-1". - Max Alekseyev, Jun 26 2007
a(n) is the number of peakless Motzkin paths of length n-1 with no UHH...HD's starting at level > 0 (here n > 0 and U=(1,1), H=(1,0), D=(1,-1)). Example: a(5)=7 because from all 8 peakless Motzkin paths of length 5 (see A004148) only UUHDD does not qualify. - Emeric Deutsch, Sep 13 2004
Equals the INVERT transform of (1, 0, 1, 1, 1, ...); equivalent to a(n) = a(n-1) + a(n-3) + a(n-4) + ... - Gary W. Adamson, Apr 27 2009
a(n) is the number of length n-1 words on {0,1} such that each string of 1's is followed by a string of at least two 0's. For example, a(5) = 4 because we have: 0000, 0100, 1000, and 1100. - Geoffrey Critzer, Aug 09 2013
a(n+1) is the top left entry of the n-th power of any of the 3 X 3 matrices [1, 1, 0; 0, 1, 1; 1, 0, 0] or [1, 0, 1; 1, 1, 0; 0, 1, 0] or [1, 1, 0; 0, 0, 1; 1, 0, 1] or [1, 0, 1; 1, 0, 0; 0, 1, 1]. - R. J. Mathar, Feb 03 2014
For n >= 2, a(n) is the number of (n-2)-length binary words with no isolated zeros. - Milan Janjic, Mar 07 2015
Apart from the first three terms, the total number of bargraphs of semiperimeter n of height at most two for n >= 2 starts 1, 2, 4, 7, 12, ... - Arnold Knopfmacher, Nov 02 2016
Number of DD-equivalence classes of Łukasiewicz paths. Łukasiewicz paths are DD-equivalent iff the positions of pattern DD are identical in these paths. - Sergey Kirgizov, Apr 08 2018
From Gus Wiseman, Nov 25 2019: (Start)
For n > 0, also the number of subsets of {1, ..., n - 3} such that if x and x + 2 are both in the subset, then so is x + 1. For example, the a(3) = 1 through a(7) = 12 subsets are:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{2,3} {1,2}
{1,2,3} {1,4}
{2,3}
{3,4}
{1,2,3}
{2,3,4}
{1,2,3,4}
(End)
The two-dimensional version, which counts sets of pairs where, if two pairs are separated by graph-distance 2, then the intermediate pair or pairs are also in the set, is A329871. - Gus Wiseman, Nov 30 2019
a(n+1) is the number of ways to tile a strip of length n with squares, dominoes, and tetrominoes, where the first tile cannot be a domino. - Greg Dresden and Myanna Nash, Aug 18 2020

Examples

			From _Joerg Arndt_, Jan 26 2013: (Start)
The a(5+2) = 12 compositions of 5 where no two adjacent parts are != 1 are
  [ 1]  [ 1 1 1 1 1 ]
  [ 2]  [ 1 1 1 2 ]
  [ 3]  [ 1 1 2 1 ]
  [ 4]  [ 1 1 3 ]
  [ 5]  [ 1 2 1 1 ]
  [ 6]  [ 1 3 1 ]
  [ 7]  [ 1 4 ]
  [ 8]  [ 2 1 1 1 ]
  [ 9]  [ 2 1 2 ]
  [10]  [ 3 1 1 ]
  [11]  [ 4 1 ]
  [12]  [ 5 ]
(End)
G.f. = x + x^2 + x^3 + 2*x^4 + 4*x^5 + 7*x^6 + 12*x^7 + 21*x^8 + 37*x^9 + ...
		

References

  • S. Burckel, Efficient methods for three strand braids (submitted). [Apparently unpublished]
  • P. Chinn and S. Heubach, "Compositions of n with no occurrence of k", Congressus Numeratium, 2002, v. 162, pp. 33-51.
  • John H. Conway and R. K. Guy, The Book of Numbers, Copernicus Press, p. 205.
  • R. K. Guy, "Anyone for Twopins?" in D. A. Klarner, editor, The Mathematical Gardner. Prindle, Weber and Schmidt, Boston, 1981, pp. 2-15.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Bisection of Padovan sequence A000931.
Partial sums of A005314 shifted 3 times to the right, if we assume A005314(0) = 1.
Compositions without adjacent equal parts are A003242.
Compositions without isolated parts are A114901.
Row sums of A097230(n-2) for n>1.

Programs

  • Haskell
    a005251 n = a005251_list !! n
    a005251_list = 0 : 1 : 1 : 1 : zipWith (+) a005251_list
       (drop 2 $ zipWith (+) a005251_list (tail a005251_list))
    -- Reinhard Zumkeller, Dec 28 2011
    
  • Magma
    I:=[0,1,1,1]; [n le 4 select I[n] else Self(n-1)+Self(n-2)+Self(n-4): n in [1..45]]; // Vincenzo Librandi, Nov 30 2018
    
  • Magma
    R:=PowerSeriesRing(Integers(), 40); [0] cat Coefficients(R!( x*(1-x)/(1-2*x + x^2 - x^3) )); // Marius A. Burtea, Oct 24 2019
    
  • Maple
    A005251 := proc(n) option remember; if n <= 2 then n elif n = 3 then 4 else 2*A005251(n - 1) - A005251(n - 2) + A005251(n - 3); fi; end;
    A005251:=(-1+z)/(-1+2*z-z**2+z**3); # Simon Plouffe in his 1992 dissertation
    a := n -> `if`(n<=1, n, hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4)):
    seq(simplify(a(n)), n=0..36); # Peter Luschny, Apr 08 2018
  • Mathematica
    LinearRecurrence[{2,-1,1},{0,1,1},40]  (* Harvey P. Dale, May 05 2011 *)
    a[ n_]:= If[n<0, SeriesCoefficient[ -x(1-x)/(1 -x + 2x^2 -x^3), {x, 0, -n}], SeriesCoefficient[ x(1-x)/(1 -2x +x^2 -x^3), {x, 0, n}]] (* Michael Somos, Dec 13 2013 *)
    a[0] = 1; a[1] = a[2] = 0; a[n_] := a[n] = a[n-2] + a[n-3]; Table[a[2 n-1], {n, 1, 20}] (* Rigoberto Florez, Oct 15 2019 *)
    Table[If[n==0,0,Length[DeleteCases[Subsets[Range[n-3]],{_,x_,y_,_}/;x+2==y]]],{n,0,10}] (* Gus Wiseman, Nov 25 2019 *)
  • PARI
    Vec((1-x)/(1-2*x+x^2-x^3)+O(x^99)) /* Charles R Greathouse IV, Nov 20 2012 */
    
  • PARI
    {a(n) = if( n<0, polcoeff( -x*(1-x)/(1 -x +2*x^2 -x^3) + x*O(x^-n), -n), polcoeff( x*(1-x)/(1 -2*x +x^2 -x^3) + x*O(x^n), n))} /* Michael Somos, Dec 13 2013 */
    
  • SageMath
    [sum( binomial(n-j-1, 2*j) for j in (0..floor((n-1)/3)) ) for n in (0..50)] # G. C. Greubel, Apr 13 2022

Formula

a(n) = 2*a(n-1) - a(n-2) + a(n-3).
G.f.: z*(1-z)/(1 - 2*z + z^2 - z^3). - Emeric Deutsch, Sep 13 2004
23*a_n = 3*P_{2n+1} + 7*P_{2n} - 2*P_{2n-1}, where P_n are the Perrin numbers, A001608. - Don Knuth, Dec 09 2008
a(n+1) = Sum_{k=0..n} binomial(n-k, 2k). - Richard L. Ollerton, May 12 2004
From Henry Bottomley, Feb 21 2001: (Start)
a(n) = (Sum_{j
a(n) = A005314(n) - A005314(n-1).
a(n) = A049853(n-1) - a(n-1).
a(n) = A005314(n) - a(n-2). (End)
Conjecture: a(n+1) + |A078065(n)| = 2*A005314(n+1). - Creighton Dement, Dec 21 2004
a(n+2) has g.f. (F_3(-x) + F_2(-x))/(F_4(-x) + F_3(-x)) = 1/(-x+1/(-x+1/(-x+1))) where F_n(x) is the n-th Fibonacci polynomial; see A011973. - Qiaochu Yuan (qchu(AT)mit.edu), Feb 19 2009
a(n) = A173022(2^(n-2) - 1) for n > 1. - Reinhard Zumkeller, Feb 07 2010
BINOMIAL transform of A176971 is a(n+1). - Michael Somos, Dec 13 2013
a(n) = hypergeom([(2-n)/3, 1-n/3, (1-n)/3], [1/2, -n+1], 27/4) for n > 1. - Peter Luschny, Apr 08 2018
G.f.: z/(1-z-z^3-z^4-z^5-...) for the compositions of n-1 avoiding 2. The g.f. for the number of compositions of n avoiding the part k is 1/(1-z-...-z^(k-1) - z^(k+1)-...). - Gregory L. Simay, Sep 09 2018
If p,q,r are the three solutions to x^3 = 2x^2 - x + 1, then a(n) = (p-1)*p^n/((p-q)*(p-r)) + (q-1)*q^n/((q-p)*(q-r)) + (r-1)*r^n/((r-p)*(r-q)). - Greg Dresden and AnXing Yang, Aug 12 2025

A209972 Number of binary words of length n avoiding the subword given by the binary expansion of k; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 1, 2, 3, 4, 1, 1, 1, 2, 4, 5, 5, 1, 1, 1, 2, 4, 7, 8, 6, 1, 1, 1, 2, 4, 7, 12, 13, 7, 1, 1, 1, 2, 4, 7, 12, 20, 21, 8, 1, 1, 1, 2, 4, 7, 12, 21, 33, 34, 9, 1, 1, 1, 2, 4, 8, 13, 20, 37, 54, 55, 10, 1, 1, 1, 2, 4, 8, 15, 24, 33, 65, 88, 89, 11, 1, 1
Offset: 0

Author

Alois P. Heinz, Mar 16 2012

Keywords

Examples

			Square array begins:
  1,  1,  1,   1,   1,   1,   1,   1,   1, ...
  1,  1,  2,   2,   2,   2,   2,   2,   2, ...
  1,  1,  3,   3,   4,   4,   4,   4,   4, ...
  1,  1,  4,   5,   7,   7,   7,   7,   8, ...
  1,  1,  5,   8,  12,  12,  12,  13,  15, ...
  1,  1,  6,  13,  20,  21,  20,  24,  28, ...
  1,  1,  7,  21,  33,  37,  33,  44,  52, ...
  1,  1,  8,  34,  54,  65,  54,  81,  96, ...
  1,  1,  9,  55,  88, 114,  88, 149, 177, ...
		

Crossrefs

Columns give: 0, 1: A000012, 2: A001477(n+1), 3: A000045(n+2), 4, 6: A000071(n+3), 5: A005251(n+3), 7: A000073(n+3), 8, 12, 14: A008937(n+1), 9, 11, 13: A049864(n+2), 10: A118870, 15: A000078(n+4), 16, 20, 24, 26, 28, 30: A107066, 17, 19, 23, 25, 29: A210003, 18, 22: A209888, 21: A152718(n+3), 27: A210021, 31: A001591(n+5), 32: A001949(n+5), 33, 35, 37, 39, 41, 43, 47, 49, 53, 57, 61: A210031.
Main diagonal equals A234005 or column k=0 of A233940.

Programs

  • Mathematica
    A[n_, k_] := Module[{bb, cnt = 0}, Do[bb = PadLeft[IntegerDigits[j, 2], n]; If[SequencePosition[bb, IntegerDigits[k, 2], 1]=={}, cnt++], {j, 0, 2^n-1 }]; cnt];
    Table[A[n-k, k], {n, 0, 12}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Nov 01 2021 *)

A189343 T(n,k)=Number of nXk binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 52, 784, 3375, 3375, 784, 52, 97, 2704, 21952, 36626, 21952, 2704, 97, 181, 9409, 140608, 390721, 390721, 140608, 9409, 181, 338, 32761, 912673, 3988168, 6814820, 3988168, 912673, 32761, 338, 631
Offset: 1

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Table starts
...2......4.........8..........15............28...............52
...4.....16........64.........225...........784.............2704
...8.....64.......512........3375.........21952...........140608
..15....225......3375.......36626........390721..........3988168
..28....784.....21952......390721.......6814820........109746642
..52...2704....140608.....3988168.....109746642.......2650369322
..97...9409....912673....42069350....1857004061......68439605144
.181..32761...5929741...442969881...31177656076....1732402041622
.338.114244..38614472..4709354541..533269057178...45288523287014
.631.398161.251239591.49857094654.9053472938552.1169200527259744

Examples

			Some solutions for 6X4
..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0
..0..0..0..1....0..0..1..0....0..0..0..0....0..0..0..0....0..0..0..1
..0..1..0..1....0..1..0..0....0..0..1..1....1..0..0..0....1..0..1..1
..0..1..1..1....0..1..1..0....0..1..1..1....0..0..1..1....0..0..0..0
..0..1..1..0....1..1..0..1....0..0..1..0....1..0..0..0....0..0..1..1
..0..1..1..1....0..0..1..1....0..0..0..1....1..0..0..0....0..0..1..0
		

Crossrefs

Column 1 is A049864(n+2)
Column 2 is column 1 squared
Column 3 is column 1 cubed

A189779 T(n,k)=Number of nXk binary arrays without the pattern 1 0 0 1 diagonally, vertically or horizontally.

Original entry on oeis.org

2, 4, 4, 8, 16, 8, 15, 64, 64, 15, 28, 225, 512, 225, 28, 52, 784, 3375, 3375, 784, 52, 97, 2704, 21952, 37976, 21952, 2704, 97, 181, 9409, 140608, 418550, 418550, 140608, 9409, 181, 338, 32761, 912673, 4461435, 7767740, 4461435, 912673, 32761, 338, 631
Offset: 1

Author

R. H. Hardin Apr 27 2011

Keywords

Comments

Table starts
...2......4.........8..........15.............28...............52
...4.....16........64.........225............784.............2704
...8.....64.......512........3375..........21952...........140608
..15....225......3375.......37976.........418550..........4461435
..28....784.....21952......418550........7767740........136521398
..52...2704....140608.....4461435......136521398.......3848548036
..97...9409....912673....48633913.....2475199422.....112831587094
.181..32761...5929741...530389481....44835555921....3292640179737
.338.114244..38614472..5817065520...819898395901...97500493294819
.631.398161.251239591.63680392402.14951509967629.2875530570969513

Examples

			Some solutions for 7X5
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..0..0..0..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..0..1..0..0..0....0..1..0..0..0....1..1..0..0..0....1..1..0..0..0
..0..1..0..0..0....0..0..0..0..0....1..1..0..0..0....1..1..0..0..0
..1..1..0..1..0....1..1..1..1..0....0..0..0..1..0....1..1..1..0..0
..0..0..1..1..1....1..0..0..0..0....0..1..0..1..0....1..0..0..0..0
..0..0..1..0..1....1..1..1..0..1....0..0..1..0..0....0..1..1..1..1
		

Crossrefs

Column 1 is A049864(n+2)
Column 2 is A189336
Column 3 is A189337

A118890 Triangle read by rows: T(n,k) is the number of binary sequences of length n containing k subsequences 0110 (n,k >= 0).

Original entry on oeis.org

1, 2, 4, 8, 15, 1, 28, 4, 52, 12, 97, 30, 1, 181, 70, 5, 338, 156, 18, 631, 339, 53, 1, 1178, 722, 142, 6, 2199, 1515, 357, 25, 4105, 3140, 862, 84, 1, 7663, 6444, 2018, 252, 7, 14305, 13116, 4614, 700, 33, 26704, 26513, 10348, 1846, 124, 1, 49850, 53280, 22844
Offset: 0

Author

Emeric Deutsch, May 04 2006

Keywords

Comments

Row n has ceiling(n/3) terms (n>=1).
Sum of entries in row n is 2^n (A000079).
T(n,0) = A049864(n).
T(n,1) = A118892(n).
Sum_{n>=0} k*T(n,k) = (n-3)*2^(n-4) (A001787).

Examples

			T(8,2) = 5 because we have 01100110, 01101100, 01101101, 00110110 and 10110110.
Triangle starts:
    1;
    2;
    4;
    8;
   15,   1;
   28,   4;
   52,  12;
   97,  30,  1;
  181,  70,  5;
  338, 156, 18;
  631, 339, 53, 1;
		

Crossrefs

Programs

  • Maple
    G:=(1+(1-t)*z^3)/(1-2*z+(1-t)*(1-z)*z^3): Gser:=simplify(series(G,z=0,24)): P[0]:=1: for n from 1 to 18 do P[n]:=sort(coeff(Gser,z^n)) od: 1; for n from 1 to 18 do seq(coeff(P[n],t,j),j=0..ceil(n/3)-1) od; # yields sequence in triangular form
  • Mathematica
    nn=18;c=x^3;Map[Select[#,#>0&]&,CoefficientList[Series[1/(1-2x - (y-1)x^4/ (1-(y-1)c)),{x,0,nn}],{x,y}]]//Flatten (* Geoffrey Critzer, Dec 25 2013 *)

Formula

G.f.: G(t,z) = (1+(1-t)z^3)/(1 - 2z + (1-t)(1-z)z^3).

A049858 a(n) = Sum{a(k): k=0,1,2,...,n-4,n-2,n-1}; a(n-3) is not a summand; initial terms are 0,1,2.

Original entry on oeis.org

0, 1, 2, 3, 5, 9, 17, 32, 60, 112, 209, 390, 728, 1359, 2537, 4736, 8841, 16504, 30809, 57513, 107363, 200421, 374138, 698426, 1303794, 2433871, 4543454, 8481540, 15833003, 29556423, 55174760, 102998057, 192272694, 358927051, 670030805, 1250786973, 2334919589
Offset: 0

Keywords

Crossrefs

Pairwise sums of A049856. Partial sums of A049864.

Programs

Formula

a(n) = 2*a(n-1) -a(n-3) +a(n-4).
G.f. x*(x-1)*(1+x) / ( -1+2*x-x^3+x^4 ). - R. J. Mathar, Nov 12 2012
a(n) = A059633(n+2)-A059633(n). - R. J. Mathar, Aug 16 2017

A118891 Number of binary sequences of length n with no subsequence 01110.

Original entry on oeis.org

1, 2, 4, 8, 16, 31, 60, 116, 223, 428, 820, 1569, 3002, 5744, 10992, 21039, 40273, 77095, 147588, 282538, 540881, 1035440, 1982194, 3794602, 7264164, 13906079, 26620957, 50961552, 97557726, 186758657, 357519595, 684414146, 1310201570
Offset: 0

Author

Max Alekseyev, Jun 26 2007

Keywords

Comments

This is a_4(n) in the Doroslovacki reference.

Crossrefs

Programs

  • PARI
    { a4(n) = 1 + sum(i=1,n, sum(j=0,n-i, sum(k=0,(n-i-j)\2, sum(l=0,(n-i-j-2*k)\4, binomial(i-1,j)*binomial(i-1-j,k)*binomial(i-1-j-2*k,l)*binomial(n-i-j-2*k-3*l+1,l+1))))) }

Formula

Empirical g.f.: -(x^8+x^7-x^5+2*x^4-x+1) / (x^9-x^7-x^6+4*x^5-2*x^4-2*x^2+3*x-1). - Colin Barker, Aug 11 2013

Extensions

More terms from Max Alekseyev, Sep 25 2009

A118892 Number of binary sequences of length n containing exactly one subsequence 0110.

Original entry on oeis.org

0, 0, 0, 0, 1, 4, 12, 30, 70, 156, 339, 722, 1515, 3140, 6444, 13116, 26513, 53280, 106530, 212062, 420503, 830964, 1637055, 3216240, 6303099, 12324816, 24049953, 46841550, 91074760, 176796340, 342696000, 663363750, 1282457260, 2476394580
Offset: 0

Author

Emeric Deutsch, May 04 2006

Keywords

Comments

Column 1 of A118890. Convolution of A059633 with itself (disregard the 0 terms).

Examples

			a(5)=4 because we have 01100,01101,00110 and 10110.
		

Crossrefs

Programs

  • Maple
    G:=z^4/(1-2*z+z^3-z^4)^2: Gser:=series(G,z=0,37): seq(coeff(Gser,z,n),n=0..34);

Formula

G.f.=z^4/(1-2z+z^3-z^4)^2.
+(-n+4)*a(n) +2*(n-3)*a(n-1) +(-n+1)*a(n-3) +n*a(n-4)=0. - R. J. Mathar, Jul 26 2022

A189336 Number of nX2 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

4, 16, 64, 225, 784, 2704, 9409, 32761, 114244, 398161, 1387684, 4835601, 16851025, 58721569, 204633025, 713103616, 2485022500, 8659791364, 30177596089, 105162706944, 366470415424, 1277074025929, 4450340433889, 15508521343396
Offset: 1

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 2 of A189343

Examples

			Some solutions for 4X2
..0..0....1..0....1..0....0..0....1..0....0..1....0..0....0..1....1..1....0..0
..1..1....1..0....0..0....1..0....1..0....0..1....1..1....1..0....0..1....1..1
..0..0....1..0....1..0....0..1....0..1....0..1....1..0....0..1....1..0....1..1
..0..1....0..1....1..1....0..1....1..1....0..0....0..1....1..0....0..1....1..1
		

Crossrefs

A049864(n+2) squared

Formula

Empirical: a(n) = 4*a(n-1) -a(n-2) -6*a(n-3) +12*a(n-4) -3*a(n-5) +3*a(n-6) -6*a(n-7) +a(n-8) -a(n-9) +a(n-10)

A189337 Number of nX3 binary arrays without the pattern 1 0 0 1 diagonally, vertically, antidiagonally or horizontally.

Original entry on oeis.org

8, 64, 512, 3375, 21952, 140608, 912673, 5929741, 38614472, 251239591, 1634691752, 10633486599, 69173457625, 449983383247, 2927275422625, 19042718961664, 123878371625000, 805862864751112, 5242361459792813, 34103003909455872
Offset: 1

Author

R. H. Hardin Apr 20 2011

Keywords

Comments

Column 3 of A189343

Examples

			Some solutions for 4X3
..0..1..0....0..0..0....0..0..1....0..0..0....1..1..1....1..0..1....1..1..0
..0..1..1....1..1..1....1..1..0....0..0..0....1..0..1....0..1..1....1..1..1
..0..1..1....0..0..1....0..1..0....0..0..0....1..1..0....1..0..1....0..1..1
..1..1..1....0..0..0....1..0..0....0..1..0....0..1..1....0..0..1....1..1..1
		

Crossrefs

A049864(n+2) cubed

Formula

Empirical: a(n) = 7*a(n-1) -41*a(n-3) +130*a(n-4) +81*a(n-6) -369*a(n-7) -73*a(n-8) -173*a(n-9) +243*a(n-10) +211*a(n-11) -77*a(n-12) +117*a(n-13) +81*a(n-14) +20*a(n-16) +13*a(n-17) +a(n-19) +a(n-20)
Showing 1-10 of 11 results. Next