A119688 a(n) = n!! mod (n+1).
1, 2, 3, 3, 3, 6, 1, 6, 5, 1, 3, 8, 7, 0, 1, 13, 9, 1, 15, 0, 11, 1, 9, 0, 13, 0, 7, 17, 15, 1, 1, 0, 17, 0, 27, 6, 19, 0, 25, 9, 21, 1, 11, 0, 23, 46, 33, 0, 25, 0, 39, 30, 27, 0, 49, 0, 29, 58, 15, 50, 31, 0, 1, 0, 33, 1, 51, 0, 35, 1, 9, 27, 37, 0, 19, 0, 39, 78, 65, 0, 41, 82, 63, 0
Offset: 1
Examples
5!! = 5*3*1 = 15, a(5) = 15 mod (5+1) = 3. 6!! = 6*4*2 = 48, a(6) = 48 mod (6+1) = 6.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Double Factorial
Programs
-
Magma
DoubleFactorial:=func< n | &*[n..2 by -2] >; [ DoubleFactorial(n) mod (n+1): n in [1..100] ]; // Klaus Brockhaus, Feb 15 2011
-
Maple
P:= proc(n) local i, j, k, s; for k from 1 by 1 to n do i:=k; j:=k-2; while j >0 do i:=i*j; j:=j-2; od: s:=i mod (k+1); print(s); od: end: P(100); ## another version: a:= proc(n) local t, m; if irem (n, 2)=1 or n<14 or isprime(n+1) then t:= 1; for m from n by -2 while m>1 do t:= (t*m) mod (n+1) od; t else 0 fi end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 15 2011
-
Mathematica
Table[Mod[n!!,n+1],{n,100}] (* Zak Seidov, Feb 15 2011 *)
-
PARI
a(n) = prod(i=0, (n-1)\2, n - 2*i) % (n+1); \\ after PARI for A006882; Michel Marcus, Aug 22 2016
Extensions
a(63) corrected, a(64) inserted by Klaus Brockhaus, Feb 15 2011
Comments