A119842 Number of alternating linear extensions of the divisor lattice of n.
1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 2, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 6, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 2, 1, 0
Offset: 1
Keywords
Examples
In other words, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it AND the divisors d_i, d_j, d_k, etc. are arranged so that values bigomega(d_i) (cf. A001222), bigomega(d_j), bigomega(d_k) are alternatively even and odd. E.g., a(12)=1, as of the five arrangements shown in A114717, here the only one allowed is 1,2,4,3,6,12, with A001222(1)=0, A001222(2)=1, A001222(4)=2, A001222(3)=1, A001222(6)=2, A001222(12)=3. a(36) = 2, as there are two solutions for 36: 1,2,4,3,6,12,9,18,36 and 1,3,9,2,6,18,4,12,36.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- T. Y. Chow, H. Eriksson, C. K. Fan, Chess Tableaux, The Electronic Journal of Combinatorics, vol. 11(2), 2004.
- T. Y. Chow, H. Eriksson, C. K. Fan, Chess Tableaux and Chess Problems, slides for MIT Combinatorics Seminar, 20 October 2004.
- Index entries for sequences computed from exponents in factorization of n
Programs
-
Maple
with(numtheory): b:= proc(s, t) option remember; `if`(nops(s)<1, 1, add( `if`(irem(bigomega(x), 2)=1-t and nops(select(y-> irem(y, x)=0, s))=1, b(s minus {x}, 1-t), 0), x=s)) end: a:= proc(n) option remember; local l, m; l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]); m:= mul(ithprime(i)^l[i][2], i=1..nops(l)); b(divisors(m) minus {1, m}, irem(bigomega(m), 2)) end: seq(a(n), n=1..100); # Alois P. Heinz, Feb 26 2016
-
Mathematica
b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1-t && Length[Select[s, Mod[#, x] == 0&]] == 1, b[s ~Complement~ {x}, 1-t ], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[FactorInteger[n ], #1[[2]] > #2[[2]]&]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[ l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, Feb 27 2016, after Alois P. Heinz *)
Comments