cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A119847 Positions where A119842 is zero.

Original entry on oeis.org

6, 10, 14, 15, 21, 22, 24, 26, 30, 33, 34, 35, 38, 39, 40, 42, 46, 51, 54, 55, 56, 57, 58, 60, 62, 65, 66, 69, 70, 74, 77, 78, 82, 84, 85, 86, 87, 88, 90, 91, 93, 94, 95, 96, 102, 104, 105, 106, 110, 111, 114, 115, 118, 119, 122, 123, 126, 129, 130, 132, 133, 134
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

In addition to the terms of A119899 includes also terms with prime signature p*q*r, e.g. 30 (= 2*3*5). Anything else?

Crossrefs

Complement: A119848. Superset of A119899. Cf. A119850.
Cf. A229153.

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; c[n_] := Module[{l, m}, l = Sort[FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]} ]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; A119847 = Position[ Table[c[n], {n, 1, 200}], 0] // Flatten (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

A119848 Positions where A119842 is not zero.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 25, 27, 28, 29, 31, 32, 36, 37, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 89, 92, 97, 98, 99, 100, 101, 103, 107, 108, 109, 112, 113, 116, 117, 120, 121
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

Complement: A119847. Cf. A119850.

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; c[n_] := Module[{l, m}, l = Sort[FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]} ]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; A119848 = Position[ Table[c[n], {n, 1, 200}], ?Positive] // Flatten (* _Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

A119845 Positions where new distinct values appear in A119842.

Original entry on oeis.org

1, 6, 36, 72, 120, 144, 180, 192, 288, 420, 432, 480, 576, 720, 900, 1080, 1152, 1296, 1680, 1728, 1800, 1920, 2304, 2520, 2592, 2880, 3072, 3600, 4320, 4608, 5184, 6300, 6480, 6720, 6912, 7200, 7680, 9216, 9240
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

a(16) is greater than 960.

Crossrefs

Subset of A025487. Cf. A119846, A119843.

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Join[{1}, Reap[For[ k = 2, k < 10^4, k++, If[FreeQ[Array[a, k - 1], a[k]], Print[k, " ", a[k]]; Sow[k]]]][[2, 1]]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

Extensions

a(16)-a(39) from Alois P. Heinz, Feb 26 2016

A119846 Distinct values in A119842, in order of appearance.

Original entry on oeis.org

1, 0, 2, 6, 14, 22, 252, 5, 92, 17526, 324, 2916, 422, 9278038, 411126, 23694308, 2074, 8716, 1186593143406, 47570, 11395487424, 918166, 10754, 789632365568454684, 343234, 1164751580868, 42, 917581820575340, 1914786011328142, 58202, 17423496
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

a(n) = A119842(A119845(n)).

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; A119846 = Reap[For[k = 1, k < 6000, k++, If[FreeQ[Array[a, k - 1], a[k]], Print[k, " ", a[k]]; Sow[a[k]]]]][[2, 1]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

Extensions

a(16)-a(31) from Alois P. Heinz, Feb 26 2016

A119850 Positions where A119842 is greater than one.

Original entry on oeis.org

36, 48, 72, 80, 100, 108, 112, 120, 144, 162, 168, 176, 180, 192, 196, 200, 208, 225, 252, 264, 270, 272, 280, 288, 300, 304, 312, 320, 324, 368, 378, 392, 396, 400, 405, 408, 420, 432, 440, 441, 448, 450, 456, 464, 468, 480, 484, 496, 500, 520, 552, 567
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

Subset of A119848.

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]} ]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; A119842 = Array[a, 1000]; A119850 = Position[A119842, n_ /; n > 1] // Flatten (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

A119843 A119842(n) sets a new record.

Original entry on oeis.org

1, 36, 72, 120, 144, 180, 420, 720, 1080, 1680, 2520, 6300, 9240
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Comments

a(9) is greater than 960.

Crossrefs

Subset of A119845. Cf. A119844.

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Reap[For[record = 0; k = 1, k < 10^4, k++, If[a[k] > record, record = a[k]; Print[k, " ", a[k]]; Sow[k]]]][[2, 1]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

Extensions

a(9)-a(13) from Alois P. Heinz, Feb 26 2016

A119844 Records in A119842.

Original entry on oeis.org

1, 2, 6, 14, 22, 252, 17526, 9278038, 23694308, 1186593143406, 789632365568454684, 3199548374111958458274, 849440501364681630324594977448
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

a(n) = A119842(A119843(n)).

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Reap[For[record = 0; k = 1, k < 10^4, k++, If[a[k] > record, record = a[k]; Print[k, " ", a[k]]; Sow[a[k]]]]][[2, 1]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

Extensions

a(9)-a(13) from Alois P. Heinz, Feb 26 2016

A119849 Nonzero values of A119842, in order of appearance.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 2, 1, 1, 1, 14, 1, 1, 1, 1, 1, 1, 1, 1, 22, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 14, 1, 1, 1, 1, 1, 2, 1, 252, 1, 1, 1, 5, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Jun 04 2006

Keywords

Crossrefs

a(n) = A119842(A119848(n)).

Programs

  • Mathematica
    b[s_, t_] := b[s, t] = If[Length[s] < 1, 1, Sum[If[Mod[PrimeOmega[x], 2] == 1 - t && Length[Select[s, Mod[#, x] == 0 &]] == 1, b[s~Complement~{x}, 1 - t], 0], {x, s}]]; a[n_] := a[n] = Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m][[2 ;; -2]], Mod[PrimeOmega[m], 2]]]; Reap[For[ k = 1, k < 200, k++, If[a[k] > 0, Print[k, " ", a[k]]; Sow[a[k]]]]][[2, 1]] (* Jean-François Alcover, Mar 03 2016, after Alois P. Heinz *)

A114717 Number of linear extensions of the divisor lattice of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 5, 1, 2, 2, 1, 1, 5, 1, 5, 2, 2, 1, 14, 1, 2, 1, 5, 1, 48, 1, 1, 2, 2, 2, 42, 1, 2, 2, 14, 1, 48, 1, 5, 5, 2, 1, 42, 1, 5, 2, 5, 1, 14, 2, 14, 2, 2, 1, 2452, 1, 2, 5, 1, 2, 48, 1, 5, 2, 48, 1, 462, 1, 2, 5, 5, 2, 48, 1, 42, 1, 2, 1, 2452, 2, 2, 2, 14, 1, 2452, 2
Offset: 1

Views

Author

Mitch Harris and Antti Karttunen, Dec 27 2005

Keywords

Comments

Notice that only the powers of the primes determine a(n), so a(12) = a(75) = 5.
For prime powers, the lattice is a chain, so there is 1 linear extension.
a(p^1*q^n) = A000108(n+1), the Catalan numbers.
Alternatively, the number of ways to arrange the divisors of n in such a way that no divisor has any of its own divisors following it. E.g., for 12, the following five arrangements are possible: 1,2,3,4,6,12; 1,2,3,6,4,12; 1,2,4,3,6,12; 1,3,2,4,6,12 and 1,3,2,6,4,12. But 1,2,6,4,3,12 is not possible because 3 divides 6 but follows it. Thus a(12)=5. - Antti Karttunen, Jan 11 2006
For n = p1^r1 * p2^r2, the lattice is a grid (r1+1)*(r2+1), whose linear extensions are counted by ((r1+1)*(r2+1))!/Product_{k=0..r2} (r1+1+k)!/k!. Cf. A060854.

References

  • R. Stanley, Enumerative Combinatorics, Vol. 2, Proposition 7.10.3 and Vol. 1, Sec 3.5 Chains in Distributive Lattices.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(s) option remember;
          `if`(nops(s)<2, 1, add(`if`(nops(select(y->
           irem(y, x)=0, s))=1, b(s minus {x}), 0), x=s))
        end:
    a:= proc(n) local l, m;
          l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
          m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
          b(divisors(m) minus {1, m})
        end:
    seq(a(n), n=1..100);  # Alois P. Heinz, Jun 29 2012
  • Mathematica
    b[s_List] := b[s] = If[Length[s]<2, 1, Sum[If[Length[Select[s, Mod[#, x] == 0 &]] == 1, b[Complement[s, {x}]], 0], {x, s}]]; a[n_] := Module[{l, m}, l = Sort[ FactorInteger[n], #1[[2]] > #2[[2]] &]; m = Product[Prime[i]^l[[i]][[2]], {i, 1, Length[l]}]; b[Divisors[m] // Rest // Most]]; Table[a[n], {n, 1, 100}] (* Jean-François Alcover, May 28 2015, after Alois P. Heinz *)

A179926 Number of permutations of the divisors of n of the form d_1=n, d_2, d_3, ..., d_tau(n) such that d_(i+1)/d_i is a prime or 1/prime for all i.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 2, 1, 1, 3, 1, 3, 2, 2, 1, 4, 1, 2, 1, 3, 1, 18, 1, 1, 2, 2, 2, 8, 1, 2, 2, 4, 1, 18, 1, 3, 3, 2, 1, 5, 1, 3, 2, 3, 1, 4, 2, 4, 2, 2, 1, 106, 1, 2, 3, 1, 2, 18, 1, 3, 2, 18, 1, 17, 1, 2, 3, 3, 2, 18, 1, 5, 1, 2, 1, 106, 2, 2, 2, 4, 1, 106, 2, 3, 2, 2, 2, 6, 1, 3, 3, 8, 1, 18, 1, 4, 18, 2, 1, 17, 1, 18, 2, 5, 1, 18, 2, 3, 3, 2, 2, 572
Offset: 1

Views

Author

Vladimir Shevelev, Aug 02 2010

Keywords

Comments

In view of formulas given below, there are many common first terms with A001221. Note that, for n >= 1, a(n) is positive; it is function of exponents of prime power factorization of n only; moreover, it is invariant with respect to permutations of them.
An equivalent multiset formulation of the problem: for a given finite multiset A, we should, beginning with A, to get all submultisets of A, if, by every step, we remove or join 1 element. How many ways are there to do this?
Via Seqfan Discussion List (Aug 03 2010), Alois P. Heinz proved that every subsequence of the form a(p), a(p*q), a(p*q*r), ..., where p, q, r, ... are distinct primes, coincides with A003043. - Vladimir Shevelev, Aug 09 2010
The parity (odd or even) of bigomega(d_i) in a permutation of divisors of n alternates. - David A. Corneth, Nov 25 2017
Equivalently, the number of Hamiltonian paths in a graph with vertices corresponding to the divisors of n and edges connecting divisors that differ by a prime with the path starting on the vertex associated with 1. - Andrew Howroyd, Oct 26 2019

Examples

			a(12)=3:
[12, 6, 3, 1, 2, 4]
[12, 4, 2, 6, 3, 1]
[12, 4, 2, 1, 3, 6]
a(45)=3:
[45, 15, 5, 1, 3, 9]
[45, 9, 3, 15, 5, 1]
[45, 9, 3, 1, 5, 15]
		

Crossrefs

See A173675 for another version.

Programs

  • Maple
    q:= (i, j)-> is(i/j, integer) and isprime(i/j):
    b:= proc(s, l) option remember; `if`(s={}, 1, add(
         `if`(q(l, j) or q(j, l), b(s minus{j}, j), 0), j=s))
        end:
    a:= n-> (s-> b(s minus {n}, n))(numtheory[divisors](n)):
    seq(a(n), n=1..100);  # Alois P. Heinz, Nov 26 2017
  • Mathematica
    q[i_, j_] := PrimeQ[i/j];
    b[s_, l_] := b[s, l] = If[s == {}, 1, Sum[If[q[l, j] || q[j, l], b[s  ~Complement~ {j}, j], 0], {j, s}]];
    a[n_] := Function[s, b[s ~Complement~ {n}, n]][Divisors[n]];
    Array[a, 120] (* Jean-François Alcover, Dec 13 2017, after Alois P. Heinz *)
  • PARI
    a(n) = {my(f = factor(n), l = List(), chain = List()); res = 0; forvec(x = vector(#f~, i, [0, f[i, 2]]), listput(l, x)); listput(chain, l[#l]); listpop(l, #l); iterate(chain, l); res}
    iterate(c, l) = {if(#l == 1, if(vecsum(abs(c[#c] - l[1])) == 1, res++), my(cc, cl);
    for(i = 1, #l, if(vecsum(abs(c[#c] - l[i])) == 1, cc = c; cl = l; listput(cc, l[i]); listpop(cl, i); iterate(cc, cl))))}
    first(n) = {my(res = vector(n), m = Map()); res[1] = 1; for(i = 2, n, cn = a046523(i); if(cn == i, mapput(m, i, a(i))); res[i] = mapget(m, cn)); res}
    a046523(n)=my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f,(p=nextprime(p+1))^f[i]) \\ (a046523 from Charles R Greathouse IV), David A. Corneth, Nov 24 2017

Formula

a(p^k)=1, a(p^k*q)=k+1, a(p^2*q^2)=8, a(p^2*q^3)=17, a(pqr)=18, a(p^2*q*r)=106, a(p^3*q*r)=572, etc. (here p,q,r are distinct primes, k >= 0).

Extensions

Corrected by D. S. McNeil and Alois P. Heinz and extended by Alois P. Heinz from a(46) via the Seqfan Discussion List (Aug 02 2010)
Showing 1-10 of 12 results. Next